SuperClaude/docs/research/research_serena_mcp_2025-01-16.md
kazuki nakai 882a0d8356
refactor: PM Agent complete independence from external MCP servers (#439)
* refactor: PM Agent complete independence from external MCP servers

## Summary
Implement graceful degradation to ensure PM Agent operates fully without
any MCP server dependencies. MCP servers now serve as optional enhancements
rather than required components.

## Changes

### Responsibility Separation (NEW)
- **PM Agent**: Development workflow orchestration (PDCA cycle, task management)
- **mindbase**: Memory management (long-term, freshness, error learning)
- **Built-in memory**: Session-internal context (volatile)

### 3-Layer Memory Architecture with Fallbacks
1. **Built-in Memory** [OPTIONAL]: Session context via MCP memory server
2. **mindbase** [OPTIONAL]: Long-term semantic search via airis-mcp-gateway
3. **Local Files** [ALWAYS]: Core functionality in docs/memory/

### Graceful Degradation Implementation
- All MCP operations marked with [ALWAYS] or [OPTIONAL]
- Explicit IF/ELSE fallback logic for every MCP call
- Dual storage: Always write to local files + optionally to mindbase
- Smart lookup: Semantic search (if available) → Text search (always works)

### Key Fallback Strategies

**Session Start**:
- mindbase available: search_conversations() for semantic context
- mindbase unavailable: Grep docs/memory/*.jsonl for text-based lookup

**Error Detection**:
- mindbase available: Semantic search for similar past errors
- mindbase unavailable: Grep docs/mistakes/ + solutions_learned.jsonl

**Knowledge Capture**:
- Always: echo >> docs/memory/patterns_learned.jsonl (persistent)
- Optional: mindbase.store() for semantic search enhancement

## Benefits
-  Zero external dependencies (100% functionality without MCP)
-  Enhanced capabilities when MCPs available (semantic search, freshness)
-  No functionality loss, only reduced search intelligence
-  Transparent degradation (no error messages, automatic fallback)

## Related Research
- Serena MCP investigation: Exposes tools (not resources), memory = markdown files
- mindbase superiority: PostgreSQL + pgvector > Serena memory features
- Best practices alignment: /Users/kazuki/github/airis-mcp-gateway/docs/mcp-best-practices.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: add PR template and pre-commit config

- Add structured PR template with Git workflow checklist
- Add pre-commit hooks for secret detection and Conventional Commits
- Enforce code quality gates (YAML/JSON/Markdown lint, shellcheck)

NOTE: Execute pre-commit inside Docker container to avoid host pollution:
  docker compose exec workspace uv tool install pre-commit
  docker compose exec workspace pre-commit run --all-files

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* docs: update PM Agent context with token efficiency architecture

- Add Layer 0 Bootstrap (150 tokens, 95% reduction)
- Document Intent Classification System (5 complexity levels)
- Add Progressive Loading strategy (5-layer)
- Document mindbase integration incentive (38% savings)
- Update with 2025-10-17 redesign details

* refactor: PM Agent command with progressive loading

- Replace auto-loading with User Request First philosophy
- Add 5-layer progressive context loading
- Implement intent classification system
- Add workflow metrics collection (.jsonl)
- Document graceful degradation strategy

* fix: installer improvements

Update installer logic for better reliability

* docs: add comprehensive development documentation

- Add architecture overview
- Add PM Agent improvements analysis
- Add parallel execution architecture
- Add CLI install improvements
- Add code style guide
- Add project overview
- Add install process analysis

* docs: add research documentation

Add LLM agent token efficiency research and analysis

* docs: add suggested commands reference

* docs: add session logs and testing documentation

- Add session analysis logs
- Add testing documentation

* feat: migrate CLI to typer + rich for modern UX

## What Changed

### New CLI Architecture (typer + rich)
- Created `superclaude/cli/` module with modern typer-based CLI
- Replaced custom UI utilities with rich native features
- Added type-safe command structure with automatic validation

### Commands Implemented
- **install**: Interactive installation with rich UI (progress, panels)
- **doctor**: System diagnostics with rich table output
- **config**: API key management with format validation

### Technical Improvements
- Dependencies: Added typer>=0.9.0, rich>=13.0.0, click>=8.0.0
- Entry Point: Updated pyproject.toml to use `superclaude.cli.app:cli_main`
- Tests: Added comprehensive smoke tests (11 passed)

### User Experience Enhancements
- Rich formatted help messages with panels and tables
- Automatic input validation with retry loops
- Clear error messages with actionable suggestions
- Non-interactive mode support for CI/CD

## Testing

```bash
uv run superclaude --help     # ✓ Works
uv run superclaude doctor     # ✓ Rich table output
uv run superclaude config show # ✓ API key management
pytest tests/test_cli_smoke.py # ✓ 11 passed, 1 skipped
```

## Migration Path

-  P0: Foundation complete (typer + rich + smoke tests)
- 🔜 P1: Pydantic validation models (next sprint)
- 🔜 P2: Enhanced error messages (next sprint)
- 🔜 P3: API key retry loops (next sprint)

## Performance Impact

- **Code Reduction**: Prepared for -300 lines (custom UI → rich)
- **Type Safety**: Automatic validation from type hints
- **Maintainability**: Framework primitives vs custom code

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate documentation directories

Merged claudedocs/ into docs/research/ for consistent documentation structure.

Changes:
- Moved all claudedocs/*.md files to docs/research/
- Updated all path references in documentation (EN/KR)
- Updated RULES.md and research.md command templates
- Removed claudedocs/ directory
- Removed ClaudeDocs/ from .gitignore

Benefits:
- Single source of truth for all research reports
- PEP8-compliant lowercase directory naming
- Clearer documentation organization
- Prevents future claudedocs/ directory creation

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* perf: reduce /sc:pm command output from 1652 to 15 lines

- Remove 1637 lines of documentation from command file
- Keep only minimal bootstrap message
- 99% token reduction on command execution
- Detailed specs remain in superclaude/agents/pm-agent.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* perf: split PM Agent into execution workflows and guide

- Reduce pm-agent.md from 735 to 429 lines (42% reduction)
- Move philosophy/examples to docs/agents/pm-agent-guide.md
- Execution workflows (PDCA, file ops) stay in pm-agent.md
- Guide (examples, quality standards) read once when needed

Token savings:
- Agent loading: ~6K → ~3.5K tokens (42% reduction)
- Total with pm.md: 71% overall reduction

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate PM Agent optimization and pending changes

PM Agent optimization (already committed separately):
- superclaude/commands/pm.md: 1652→14 lines
- superclaude/agents/pm-agent.md: 735→429 lines
- docs/agents/pm-agent-guide.md: new guide file

Other pending changes:
- setup: framework_docs, mcp, logger, remove ui.py
- superclaude: __main__, cli/app, cli/commands/install
- tests: test_ui updates
- scripts: workflow metrics analysis tools
- docs/memory: session state updates

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: simplify MCP installer to unified gateway with legacy mode

## Changes

### MCP Component (setup/components/mcp.py)
- Simplified to single airis-mcp-gateway by default
- Added legacy mode for individual official servers (sequential-thinking, context7, magic, playwright)
- Dynamic prerequisites based on mode:
  - Default: uv + claude CLI only
  - Legacy: node (18+) + npm + claude CLI
- Removed redundant server definitions

### CLI Integration
- Added --legacy flag to setup/cli/commands/install.py
- Added --legacy flag to superclaude/cli/commands/install.py
- Config passes legacy_mode to component installer

## Benefits
-  Simpler: 1 gateway vs 9+ individual servers
-  Lighter: No Node.js/npm required (default mode)
-  Unified: All tools in one gateway (sequential-thinking, context7, magic, playwright, serena, morphllm, tavily, chrome-devtools, git, puppeteer)
-  Flexible: --legacy flag for official servers if needed

## Usage
```bash
superclaude install              # Default: airis-mcp-gateway (推奨)
superclaude install --legacy     # Legacy: individual official servers
```

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: rename CoreComponent to FrameworkDocsComponent and add PM token tracking

## Changes

### Component Renaming (setup/components/)
- Renamed CoreComponent → FrameworkDocsComponent for clarity
- Updated all imports in __init__.py, agents.py, commands.py, mcp_docs.py, modes.py
- Better reflects the actual purpose (framework documentation files)

### PM Agent Enhancement (superclaude/commands/pm.md)
- Added token usage tracking instructions
- PM Agent now reports:
  1. Current token usage from system warnings
  2. Percentage used (e.g., "27% used" for 54K/200K)
  3. Status zone: 🟢 <75% | 🟡 75-85% | 🔴 >85%
- Helps prevent token exhaustion during long sessions

### UI Utilities (setup/utils/ui.py)
- Added new UI utility module for installer
- Provides consistent user interface components

## Benefits
-  Clearer component naming (FrameworkDocs vs Core)
-  PM Agent token awareness for efficiency
-  Better visual feedback with status zones

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor(pm-agent): minimize output verbosity (471→284 lines, 40% reduction)

**Problem**: PM Agent generated excessive output with redundant explanations
- "System Status Report" with decorative formatting
- Repeated "Common Tasks" lists user already knows
- Verbose session start/end protocols
- Duplicate file operations documentation

**Solution**: Compress without losing functionality
- Session Start: Reduced to symbol-only status (🟢 branch | nM nD | token%)
- Session End: Compressed to essential actions only
- File Operations: Consolidated from 2 sections to 1 line reference
- Self-Improvement: 5 phases → 1 unified workflow
- Output Rules: Explicit constraints to prevent Claude over-explanation

**Quality Preservation**:
-  All core functions retained (PDCA, memory, patterns, mistakes)
-  PARALLEL Read/Write preserved (performance critical)
-  Workflow unchanged (session lifecycle intact)
-  Added output constraints (prevents verbose generation)

**Reduction Method**:
- Deleted: Explanatory text, examples, redundant sections
- Retained: Action definitions, file paths, core workflows
- Added: Explicit output constraints to enforce minimalism

**Token Impact**: 40% reduction in agent documentation size
**Before**: Verbose multi-section report with task lists
**After**: Single line status: 🟢 integration | 15M 17D | 36%

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate MCP integration to unified gateway

**Changes**:
- Remove individual MCP server docs (superclaude/mcp/*.md)
- Remove MCP server configs (superclaude/mcp/configs/*.json)
- Delete MCP docs component (setup/components/mcp_docs.py)
- Simplify installer (setup/core/installer.py)
- Update components for unified gateway approach

**Rationale**:
- Unified gateway (airis-mcp-gateway) provides all MCP servers
- Individual docs/configs no longer needed (managed centrally)
- Reduces maintenance burden and file count
- Simplifies installation process

**Files Removed**: 17 MCP files (docs + configs)
**Installer Changes**: Removed legacy MCP installation logic

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: update version and component metadata

- Bump version (pyproject.toml, setup/__init__.py)
- Update CLAUDE.md import service references
- Reflect component structure changes

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local>
Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 05:43:06 +05:30

424 lines
13 KiB
Markdown

# Serena MCP Research Report
**Date**: 2025-01-16
**Research Depth**: Deep
**Confidence Level**: High (90%)
## Executive Summary
PM Agent documentation references Serena MCP for memory management, but the actual implementation uses repository-scoped local files instead. This creates a documentation-reality mismatch that needs resolution.
**Key Finding**: Serena MCP exposes **NO resources**, only **tools**. The attempted `ReadMcpResourceTool` call with `serena://memories` URI failed because Serena doesn't expose MCP resources.
---
## 1. Serena MCP Architecture
### 1.1 Core Components
**Official Repository**: https://github.com/oraios/serena (9.8k stars, MIT license)
**Purpose**: Semantic code analysis toolkit with LSP integration, providing:
- Symbol-level code comprehension
- Multi-language support (25+ languages)
- Project-specific memory management
- Advanced code editing capabilities
### 1.2 MCP Server Capabilities
**Tools Exposed** (25+ tools):
```yaml
Memory Management:
- write_memory(memory_name, content, max_answer_chars=200000)
- read_memory(memory_name)
- list_memories()
- delete_memory(memory_name)
Thinking Tools:
- think_about_collected_information()
- think_about_task_adherence()
- think_about_whether_you_are_done()
Code Operations:
- read_file, get_symbols_overview, find_symbol
- replace_symbol_body, insert_after_symbol
- execute_shell_command, list_dir, find_file
Project Management:
- activate_project(path)
- onboarding()
- get_current_config()
- switch_modes()
```
**Resources Exposed**: **NONE**
- Serena provides tools only
- No MCP resource URIs available
- Cannot use ReadMcpResourceTool with Serena
### 1.3 Memory Storage Architecture
**Location**: `.serena/memories/` (project-specific directory)
**Storage Format**: Markdown files (human-readable)
**Scope**: Per-project isolation via project activation
**Onboarding**: Automatic on first run to build project understanding
---
## 2. Best Practices for Serena Memory Management
### 2.1 Session Persistence Pattern (Official)
**Recommended Workflow**:
```yaml
Session End:
1. Create comprehensive summary:
- Current progress and state
- All relevant context for continuation
- Next planned actions
2. Write to memory:
write_memory(
memory_name="session_2025-01-16_auth_implementation",
content="[detailed summary in markdown]"
)
Session Start (New Conversation):
1. List available memories:
list_memories()
2. Read relevant memory:
read_memory("session_2025-01-16_auth_implementation")
3. Continue task with full context restored
```
### 2.2 Known Issues (GitHub Discussion #297)
**Problem**: "Broken code when starting a new session" after continuous iterations
**Root Causes**:
- Context degradation across sessions
- Type confusion in multi-file changes
- Duplicate code generation
- Memory overload from reading too much content
**Workarounds**:
1. **Compilation Check First**: Always run build/type-check before starting work
2. **Read Before Write**: Examine complete file content before modifications
3. **Type-First Development**: Define TypeScript interfaces before implementation
4. **Session Checkpoints**: Create detailed documentation between sessions
5. **Strategic Session Breaks**: Start new conversation when close to context limits
### 2.3 General MCP Memory Best Practices
**Duplicate Prevention**:
- Require verification before writing
- Check existing memories first
**Session Management**:
- Read memory after session breaks
- Write comprehensive summaries before ending
**Storage Strategy**:
- Short-term state: Token-passing
- Persistent memory: External storage (Serena, Redis, SQLite)
---
## 3. Current PM Agent Implementation Analysis
### 3.1 Documentation vs Reality
**Documentation Says** (pm.md lines 34-57):
```yaml
Session Start Protocol:
1. Context Restoration:
- list_memories() → Check for existing PM Agent state
- read_memory("pm_context") → Restore overall context
- read_memory("current_plan") → What are we working on
- read_memory("last_session") → What was done previously
- read_memory("next_actions") → What to do next
```
**Reality** (Actual Implementation):
```yaml
Session Start Protocol:
1. Repository Detection:
- Bash "git rev-parse --show-toplevel"
→ repo_root
- Bash "mkdir -p $repo_root/docs/memory"
2. Context Restoration (from local files):
- Read docs/memory/pm_context.md
- Read docs/memory/last_session.md
- Read docs/memory/next_actions.md
- Read docs/memory/patterns_learned.jsonl
```
**Mismatch**: Documentation references Serena MCP tools that are never called.
### 3.2 Current Memory Storage Strategy
**Location**: `docs/memory/` (repository-scoped local files)
**File Organization**:
```yaml
docs/memory/
# Session State
pm_context.md # Complete PM state snapshot
last_session.md # Previous session summary
next_actions.md # Planned next steps
checkpoint.json # Progress snapshots (30-min)
# Active Work
current_plan.json # Active implementation plan
implementation_notes.json # Work-in-progress notes
# Learning Database (Append-Only Logs)
patterns_learned.jsonl # Success patterns
solutions_learned.jsonl # Error solutions
mistakes_learned.jsonl # Failure analysis
docs/pdca/[feature]/
plan.md, do.md, check.md, act.md # PDCA cycle documents
```
**Operations**: Direct file Read/Write via Claude Code tools (NOT Serena MCP)
### 3.3 Advantages of Current Approach
**Transparent**: Files visible in repository
**Git-Manageable**: Versioned, diff-able, committable
**No External Dependencies**: Works without Serena MCP
**Human-Readable**: Markdown and JSON formats
**Repository-Scoped**: Automatic isolation via git boundary
### 3.4 Disadvantages of Current Approach
**No Semantic Understanding**: Just text files, no code comprehension
**Documentation Mismatch**: Says Serena, uses local files
**Missed Serena Features**: Doesn't leverage LSP-powered understanding
**Manual Management**: No automatic onboarding or context building
---
## 4. Gap Analysis: Serena vs Current Implementation
| Feature | Serena MCP | Current Implementation | Gap |
|---------|------------|----------------------|-----|
| **Memory Storage** | `.serena/memories/` | `docs/memory/` | Different location |
| **Access Method** | MCP tools | Direct file Read/Write | Different API |
| **Semantic Understanding** | Yes (LSP-powered) | No (text-only) | Missing capability |
| **Onboarding** | Automatic | Manual | Missing automation |
| **Code Awareness** | Symbol-level | None | Missing integration |
| **Thinking Tools** | Built-in | None | Missing introspection |
| **Project Switching** | activate_project() | cd + git root | Manual process |
---
## 5. Options for Resolution
### Option A: Actually Use Serena MCP Tools
**Implementation**:
```yaml
Replace:
- Read docs/memory/pm_context.md
With:
- mcp__serena__read_memory("pm_context")
Replace:
- Write docs/memory/checkpoint.json
With:
- mcp__serena__write_memory(
memory_name="checkpoint",
content=json_to_markdown(checkpoint_data)
)
Add:
- mcp__serena__list_memories() at session start
- mcp__serena__think_about_task_adherence() during work
- mcp__serena__activate_project(repo_root) on init
```
**Benefits**:
- Leverage Serena's semantic code understanding
- Automatic project onboarding
- Symbol-level context awareness
- Consistent with documentation
**Drawbacks**:
- Depends on Serena MCP server availability
- Memories stored in `.serena/` (less visible)
- Requires airis-mcp-gateway integration
- More complex error handling
**Suitability**: ⭐⭐⭐ (Good if Serena always available)
---
### Option B: Remove Serena References (Clarify Reality)
**Implementation**:
```yaml
Update pm.md:
- Remove lines 15, 119, 127-191 (Serena references)
- Explicitly document repository-scoped local file approach
- Clarify: "PM Agent uses transparent file-based memory"
- Update: "Session Lifecycle (Repository-Scoped Local Files)"
Benefits Already in Place:
- Transparent, Git-manageable
- No external dependencies
- Human-readable formats
- Automatic isolation via git boundary
```
**Benefits**:
- Documentation matches reality
- No dependency on external services
- Transparent and auditable
- Simple implementation
**Drawbacks**:
- Loses semantic understanding capabilities
- No automatic onboarding
- Manual context management
- Misses Serena's thinking tools
**Suitability**: ⭐⭐⭐⭐⭐ (Best for current state)
---
### Option C: Hybrid Approach (Best of Both Worlds)
**Implementation**:
```yaml
Primary Storage: Local files (docs/memory/)
- Always works, no dependencies
- Transparent, Git-manageable
Optional Enhancement: Serena MCP (when available)
- try:
mcp__serena__think_about_task_adherence()
mcp__serena__write_memory("pm_semantic_context", summary)
except:
# Fallback gracefully, continue with local files
pass
Benefits:
- Core functionality always works
- Enhanced capabilities when Serena available
- Graceful degradation
- Future-proof architecture
```
**Benefits**:
- Works with or without Serena
- Leverages semantic understanding when available
- Maintains transparency
- Progressive enhancement
**Drawbacks**:
- More complex implementation
- Dual storage system
- Synchronization considerations
- Increased maintenance burden
**Suitability**: ⭐⭐⭐⭐ (Good for long-term flexibility)
---
## 6. Recommendations
### Immediate Action: **Option B - Clarify Reality** ⭐⭐⭐⭐⭐
**Rationale**:
- Documentation-reality mismatch is causing confusion
- Current file-based approach works well
- No evidence Serena MCP is actually being used
- Simple fix with immediate clarity improvement
**Implementation Steps**:
1. **Update `superclaude/commands/pm.md`**:
```diff
- ## Session Lifecycle (Serena MCP Memory Integration)
+ ## Session Lifecycle (Repository-Scoped Local Memory)
- 1. Context Restoration:
- - list_memories() → Check for existing PM Agent state
- - read_memory("pm_context") → Restore overall context
+ 1. Context Restoration (from local files):
+ - Read docs/memory/pm_context.md → Project context
+ - Read docs/memory/last_session.md → Previous work
```
2. **Remove MCP Resource Attempt**:
- Document: "Serena exposes tools only, not resources"
- Update: Never attempt `ReadMcpResourceTool` with "serena://memories"
3. **Clarify MCP Integration Section**:
```markdown
### MCP Integration (Optional Enhancement)
**Primary Storage**: Repository-scoped local files (`docs/memory/`)
- Always available, no dependencies
- Transparent, Git-manageable, human-readable
**Optional Serena Integration** (when available via airis-mcp-gateway):
- mcp__serena__think_about_* tools for introspection
- mcp__serena__get_symbols_overview for code understanding
- mcp__serena__write_memory for semantic summaries
```
### Future Enhancement: **Option C - Hybrid Approach** ⭐⭐⭐⭐
**When**: After Option B is implemented and stable
**Rationale**:
- Provides progressive enhancement
- Leverages Serena when available
- Maintains core functionality without dependencies
**Implementation Priority**: Low (current system works)
---
## 7. Evidence Sources
### Official Documentation
- **Serena GitHub**: https://github.com/oraios/serena
- **Serena MCP Registry**: https://mcp.so/server/serena/oraios
- **Tool Documentation**: https://glama.ai/mcp/servers/@oraios/serena/schema
- **Memory Discussion**: https://github.com/oraios/serena/discussions/297
### Best Practices
- **MCP Memory Integration**: https://www.byteplus.com/en/topic/541419
- **Memory Management**: https://research.aimultiple.com/memory-mcp/
- **MCP Resources vs Tools**: https://medium.com/@laurentkubaski/mcp-resources-explained-096f9d15f767
### Community Insights
- **Serena Deep Dive**: https://skywork.ai/skypage/en/Serena MCP Server: A Deep Dive for AI Engineers/1970677982547734528
- **Implementation Guide**: https://apidog.com/blog/serena-mcp-server/
- **Usage Examples**: https://lobehub.com/mcp/oraios-serena
---
## 8. Conclusion
**Current State**: PM Agent uses repository-scoped local files, NOT Serena MCP memory management.
**Problem**: Documentation references Serena tools that are never called, creating confusion.
**Solution**: Clarify documentation to match reality (Option B), with optional future enhancement (Option C).
**Action Required**: Update `superclaude/commands/pm.md` to remove Serena references and explicitly document file-based memory approach.
**Confidence**: High (90%) - Evidence-based analysis with official documentation verification.