SuperClaude/docs/research/research_serena_mcp_2025-01-16.md

424 lines
13 KiB
Markdown
Raw Normal View History

refactor: PM Agent complete independence from external MCP servers (#439) * refactor: PM Agent complete independence from external MCP servers ## Summary Implement graceful degradation to ensure PM Agent operates fully without any MCP server dependencies. MCP servers now serve as optional enhancements rather than required components. ## Changes ### Responsibility Separation (NEW) - **PM Agent**: Development workflow orchestration (PDCA cycle, task management) - **mindbase**: Memory management (long-term, freshness, error learning) - **Built-in memory**: Session-internal context (volatile) ### 3-Layer Memory Architecture with Fallbacks 1. **Built-in Memory** [OPTIONAL]: Session context via MCP memory server 2. **mindbase** [OPTIONAL]: Long-term semantic search via airis-mcp-gateway 3. **Local Files** [ALWAYS]: Core functionality in docs/memory/ ### Graceful Degradation Implementation - All MCP operations marked with [ALWAYS] or [OPTIONAL] - Explicit IF/ELSE fallback logic for every MCP call - Dual storage: Always write to local files + optionally to mindbase - Smart lookup: Semantic search (if available) → Text search (always works) ### Key Fallback Strategies **Session Start**: - mindbase available: search_conversations() for semantic context - mindbase unavailable: Grep docs/memory/*.jsonl for text-based lookup **Error Detection**: - mindbase available: Semantic search for similar past errors - mindbase unavailable: Grep docs/mistakes/ + solutions_learned.jsonl **Knowledge Capture**: - Always: echo >> docs/memory/patterns_learned.jsonl (persistent) - Optional: mindbase.store() for semantic search enhancement ## Benefits - ✅ Zero external dependencies (100% functionality without MCP) - ✅ Enhanced capabilities when MCPs available (semantic search, freshness) - ✅ No functionality loss, only reduced search intelligence - ✅ Transparent degradation (no error messages, automatic fallback) ## Related Research - Serena MCP investigation: Exposes tools (not resources), memory = markdown files - mindbase superiority: PostgreSQL + pgvector > Serena memory features - Best practices alignment: /Users/kazuki/github/airis-mcp-gateway/docs/mcp-best-practices.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * chore: add PR template and pre-commit config - Add structured PR template with Git workflow checklist - Add pre-commit hooks for secret detection and Conventional Commits - Enforce code quality gates (YAML/JSON/Markdown lint, shellcheck) NOTE: Execute pre-commit inside Docker container to avoid host pollution: docker compose exec workspace uv tool install pre-commit docker compose exec workspace pre-commit run --all-files 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: update PM Agent context with token efficiency architecture - Add Layer 0 Bootstrap (150 tokens, 95% reduction) - Document Intent Classification System (5 complexity levels) - Add Progressive Loading strategy (5-layer) - Document mindbase integration incentive (38% savings) - Update with 2025-10-17 redesign details * refactor: PM Agent command with progressive loading - Replace auto-loading with User Request First philosophy - Add 5-layer progressive context loading - Implement intent classification system - Add workflow metrics collection (.jsonl) - Document graceful degradation strategy * fix: installer improvements Update installer logic for better reliability * docs: add comprehensive development documentation - Add architecture overview - Add PM Agent improvements analysis - Add parallel execution architecture - Add CLI install improvements - Add code style guide - Add project overview - Add install process analysis * docs: add research documentation Add LLM agent token efficiency research and analysis * docs: add suggested commands reference * docs: add session logs and testing documentation - Add session analysis logs - Add testing documentation * feat: migrate CLI to typer + rich for modern UX ## What Changed ### New CLI Architecture (typer + rich) - Created `superclaude/cli/` module with modern typer-based CLI - Replaced custom UI utilities with rich native features - Added type-safe command structure with automatic validation ### Commands Implemented - **install**: Interactive installation with rich UI (progress, panels) - **doctor**: System diagnostics with rich table output - **config**: API key management with format validation ### Technical Improvements - Dependencies: Added typer>=0.9.0, rich>=13.0.0, click>=8.0.0 - Entry Point: Updated pyproject.toml to use `superclaude.cli.app:cli_main` - Tests: Added comprehensive smoke tests (11 passed) ### User Experience Enhancements - Rich formatted help messages with panels and tables - Automatic input validation with retry loops - Clear error messages with actionable suggestions - Non-interactive mode support for CI/CD ## Testing ```bash uv run superclaude --help # ✓ Works uv run superclaude doctor # ✓ Rich table output uv run superclaude config show # ✓ API key management pytest tests/test_cli_smoke.py # ✓ 11 passed, 1 skipped ``` ## Migration Path - ✅ P0: Foundation complete (typer + rich + smoke tests) - 🔜 P1: Pydantic validation models (next sprint) - 🔜 P2: Enhanced error messages (next sprint) - 🔜 P3: API key retry loops (next sprint) ## Performance Impact - **Code Reduction**: Prepared for -300 lines (custom UI → rich) - **Type Safety**: Automatic validation from type hints - **Maintainability**: Framework primitives vs custom code 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate documentation directories Merged claudedocs/ into docs/research/ for consistent documentation structure. Changes: - Moved all claudedocs/*.md files to docs/research/ - Updated all path references in documentation (EN/KR) - Updated RULES.md and research.md command templates - Removed claudedocs/ directory - Removed ClaudeDocs/ from .gitignore Benefits: - Single source of truth for all research reports - PEP8-compliant lowercase directory naming - Clearer documentation organization - Prevents future claudedocs/ directory creation 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * perf: reduce /sc:pm command output from 1652 to 15 lines - Remove 1637 lines of documentation from command file - Keep only minimal bootstrap message - 99% token reduction on command execution - Detailed specs remain in superclaude/agents/pm-agent.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * perf: split PM Agent into execution workflows and guide - Reduce pm-agent.md from 735 to 429 lines (42% reduction) - Move philosophy/examples to docs/agents/pm-agent-guide.md - Execution workflows (PDCA, file ops) stay in pm-agent.md - Guide (examples, quality standards) read once when needed Token savings: - Agent loading: ~6K → ~3.5K tokens (42% reduction) - Total with pm.md: 71% overall reduction 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate PM Agent optimization and pending changes PM Agent optimization (already committed separately): - superclaude/commands/pm.md: 1652→14 lines - superclaude/agents/pm-agent.md: 735→429 lines - docs/agents/pm-agent-guide.md: new guide file Other pending changes: - setup: framework_docs, mcp, logger, remove ui.py - superclaude: __main__, cli/app, cli/commands/install - tests: test_ui updates - scripts: workflow metrics analysis tools - docs/memory: session state updates 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: simplify MCP installer to unified gateway with legacy mode ## Changes ### MCP Component (setup/components/mcp.py) - Simplified to single airis-mcp-gateway by default - Added legacy mode for individual official servers (sequential-thinking, context7, magic, playwright) - Dynamic prerequisites based on mode: - Default: uv + claude CLI only - Legacy: node (18+) + npm + claude CLI - Removed redundant server definitions ### CLI Integration - Added --legacy flag to setup/cli/commands/install.py - Added --legacy flag to superclaude/cli/commands/install.py - Config passes legacy_mode to component installer ## Benefits - ✅ Simpler: 1 gateway vs 9+ individual servers - ✅ Lighter: No Node.js/npm required (default mode) - ✅ Unified: All tools in one gateway (sequential-thinking, context7, magic, playwright, serena, morphllm, tavily, chrome-devtools, git, puppeteer) - ✅ Flexible: --legacy flag for official servers if needed ## Usage ```bash superclaude install # Default: airis-mcp-gateway (推奨) superclaude install --legacy # Legacy: individual official servers ``` 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: rename CoreComponent to FrameworkDocsComponent and add PM token tracking ## Changes ### Component Renaming (setup/components/) - Renamed CoreComponent → FrameworkDocsComponent for clarity - Updated all imports in __init__.py, agents.py, commands.py, mcp_docs.py, modes.py - Better reflects the actual purpose (framework documentation files) ### PM Agent Enhancement (superclaude/commands/pm.md) - Added token usage tracking instructions - PM Agent now reports: 1. Current token usage from system warnings 2. Percentage used (e.g., "27% used" for 54K/200K) 3. Status zone: 🟢 <75% | 🟡 75-85% | 🔴 >85% - Helps prevent token exhaustion during long sessions ### UI Utilities (setup/utils/ui.py) - Added new UI utility module for installer - Provides consistent user interface components ## Benefits - ✅ Clearer component naming (FrameworkDocs vs Core) - ✅ PM Agent token awareness for efficiency - ✅ Better visual feedback with status zones 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor(pm-agent): minimize output verbosity (471→284 lines, 40% reduction) **Problem**: PM Agent generated excessive output with redundant explanations - "System Status Report" with decorative formatting - Repeated "Common Tasks" lists user already knows - Verbose session start/end protocols - Duplicate file operations documentation **Solution**: Compress without losing functionality - Session Start: Reduced to symbol-only status (🟢 branch | nM nD | token%) - Session End: Compressed to essential actions only - File Operations: Consolidated from 2 sections to 1 line reference - Self-Improvement: 5 phases → 1 unified workflow - Output Rules: Explicit constraints to prevent Claude over-explanation **Quality Preservation**: - ✅ All core functions retained (PDCA, memory, patterns, mistakes) - ✅ PARALLEL Read/Write preserved (performance critical) - ✅ Workflow unchanged (session lifecycle intact) - ✅ Added output constraints (prevents verbose generation) **Reduction Method**: - Deleted: Explanatory text, examples, redundant sections - Retained: Action definitions, file paths, core workflows - Added: Explicit output constraints to enforce minimalism **Token Impact**: 40% reduction in agent documentation size **Before**: Verbose multi-section report with task lists **After**: Single line status: 🟢 integration | 15M 17D | 36% 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate MCP integration to unified gateway **Changes**: - Remove individual MCP server docs (superclaude/mcp/*.md) - Remove MCP server configs (superclaude/mcp/configs/*.json) - Delete MCP docs component (setup/components/mcp_docs.py) - Simplify installer (setup/core/installer.py) - Update components for unified gateway approach **Rationale**: - Unified gateway (airis-mcp-gateway) provides all MCP servers - Individual docs/configs no longer needed (managed centrally) - Reduces maintenance burden and file count - Simplifies installation process **Files Removed**: 17 MCP files (docs + configs) **Installer Changes**: Removed legacy MCP installation logic 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * chore: update version and component metadata - Bump version (pyproject.toml, setup/__init__.py) - Update CLAUDE.md import service references - Reflect component structure changes 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local> Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 09:13:06 +09:00
# Serena MCP Research Report
**Date**: 2025-01-16
**Research Depth**: Deep
**Confidence Level**: High (90%)
## Executive Summary
PM Agent documentation references Serena MCP for memory management, but the actual implementation uses repository-scoped local files instead. This creates a documentation-reality mismatch that needs resolution.
**Key Finding**: Serena MCP exposes **NO resources**, only **tools**. The attempted `ReadMcpResourceTool` call with `serena://memories` URI failed because Serena doesn't expose MCP resources.
---
## 1. Serena MCP Architecture
### 1.1 Core Components
**Official Repository**: https://github.com/oraios/serena (9.8k stars, MIT license)
**Purpose**: Semantic code analysis toolkit with LSP integration, providing:
- Symbol-level code comprehension
- Multi-language support (25+ languages)
- Project-specific memory management
- Advanced code editing capabilities
### 1.2 MCP Server Capabilities
**Tools Exposed** (25+ tools):
```yaml
Memory Management:
- write_memory(memory_name, content, max_answer_chars=200000)
- read_memory(memory_name)
- list_memories()
- delete_memory(memory_name)
Thinking Tools:
- think_about_collected_information()
- think_about_task_adherence()
- think_about_whether_you_are_done()
Code Operations:
- read_file, get_symbols_overview, find_symbol
- replace_symbol_body, insert_after_symbol
- execute_shell_command, list_dir, find_file
Project Management:
- activate_project(path)
- onboarding()
- get_current_config()
- switch_modes()
```
**Resources Exposed**: **NONE**
- Serena provides tools only
- No MCP resource URIs available
- Cannot use ReadMcpResourceTool with Serena
### 1.3 Memory Storage Architecture
**Location**: `.serena/memories/` (project-specific directory)
**Storage Format**: Markdown files (human-readable)
**Scope**: Per-project isolation via project activation
**Onboarding**: Automatic on first run to build project understanding
---
## 2. Best Practices for Serena Memory Management
### 2.1 Session Persistence Pattern (Official)
**Recommended Workflow**:
```yaml
Session End:
1. Create comprehensive summary:
- Current progress and state
- All relevant context for continuation
- Next planned actions
2. Write to memory:
write_memory(
memory_name="session_2025-01-16_auth_implementation",
content="[detailed summary in markdown]"
)
Session Start (New Conversation):
1. List available memories:
list_memories()
2. Read relevant memory:
read_memory("session_2025-01-16_auth_implementation")
3. Continue task with full context restored
```
### 2.2 Known Issues (GitHub Discussion #297)
**Problem**: "Broken code when starting a new session" after continuous iterations
**Root Causes**:
- Context degradation across sessions
- Type confusion in multi-file changes
- Duplicate code generation
- Memory overload from reading too much content
**Workarounds**:
1. **Compilation Check First**: Always run build/type-check before starting work
2. **Read Before Write**: Examine complete file content before modifications
3. **Type-First Development**: Define TypeScript interfaces before implementation
4. **Session Checkpoints**: Create detailed documentation between sessions
5. **Strategic Session Breaks**: Start new conversation when close to context limits
### 2.3 General MCP Memory Best Practices
**Duplicate Prevention**:
- Require verification before writing
- Check existing memories first
**Session Management**:
- Read memory after session breaks
- Write comprehensive summaries before ending
**Storage Strategy**:
- Short-term state: Token-passing
- Persistent memory: External storage (Serena, Redis, SQLite)
---
## 3. Current PM Agent Implementation Analysis
### 3.1 Documentation vs Reality
**Documentation Says** (pm.md lines 34-57):
```yaml
Session Start Protocol:
1. Context Restoration:
- list_memories() → Check for existing PM Agent state
- read_memory("pm_context") → Restore overall context
- read_memory("current_plan") → What are we working on
- read_memory("last_session") → What was done previously
- read_memory("next_actions") → What to do next
```
**Reality** (Actual Implementation):
```yaml
Session Start Protocol:
1. Repository Detection:
- Bash "git rev-parse --show-toplevel"
→ repo_root
- Bash "mkdir -p $repo_root/docs/memory"
2. Context Restoration (from local files):
- Read docs/memory/pm_context.md
- Read docs/memory/last_session.md
- Read docs/memory/next_actions.md
- Read docs/memory/patterns_learned.jsonl
```
**Mismatch**: Documentation references Serena MCP tools that are never called.
### 3.2 Current Memory Storage Strategy
**Location**: `docs/memory/` (repository-scoped local files)
**File Organization**:
```yaml
docs/memory/
# Session State
pm_context.md # Complete PM state snapshot
last_session.md # Previous session summary
next_actions.md # Planned next steps
checkpoint.json # Progress snapshots (30-min)
# Active Work
current_plan.json # Active implementation plan
implementation_notes.json # Work-in-progress notes
# Learning Database (Append-Only Logs)
patterns_learned.jsonl # Success patterns
solutions_learned.jsonl # Error solutions
mistakes_learned.jsonl # Failure analysis
docs/pdca/[feature]/
plan.md, do.md, check.md, act.md # PDCA cycle documents
```
**Operations**: Direct file Read/Write via Claude Code tools (NOT Serena MCP)
### 3.3 Advantages of Current Approach
**Transparent**: Files visible in repository
**Git-Manageable**: Versioned, diff-able, committable
**No External Dependencies**: Works without Serena MCP
**Human-Readable**: Markdown and JSON formats
**Repository-Scoped**: Automatic isolation via git boundary
### 3.4 Disadvantages of Current Approach
**No Semantic Understanding**: Just text files, no code comprehension
**Documentation Mismatch**: Says Serena, uses local files
**Missed Serena Features**: Doesn't leverage LSP-powered understanding
**Manual Management**: No automatic onboarding or context building
---
## 4. Gap Analysis: Serena vs Current Implementation
| Feature | Serena MCP | Current Implementation | Gap |
|---------|------------|----------------------|-----|
| **Memory Storage** | `.serena/memories/` | `docs/memory/` | Different location |
| **Access Method** | MCP tools | Direct file Read/Write | Different API |
| **Semantic Understanding** | Yes (LSP-powered) | No (text-only) | Missing capability |
| **Onboarding** | Automatic | Manual | Missing automation |
| **Code Awareness** | Symbol-level | None | Missing integration |
| **Thinking Tools** | Built-in | None | Missing introspection |
| **Project Switching** | activate_project() | cd + git root | Manual process |
---
## 5. Options for Resolution
### Option A: Actually Use Serena MCP Tools
**Implementation**:
```yaml
Replace:
- Read docs/memory/pm_context.md
With:
- mcp__serena__read_memory("pm_context")
Replace:
- Write docs/memory/checkpoint.json
With:
- mcp__serena__write_memory(
memory_name="checkpoint",
content=json_to_markdown(checkpoint_data)
)
Add:
- mcp__serena__list_memories() at session start
- mcp__serena__think_about_task_adherence() during work
- mcp__serena__activate_project(repo_root) on init
```
**Benefits**:
- Leverage Serena's semantic code understanding
- Automatic project onboarding
- Symbol-level context awareness
- Consistent with documentation
**Drawbacks**:
- Depends on Serena MCP server availability
- Memories stored in `.serena/` (less visible)
- Requires airis-mcp-gateway integration
- More complex error handling
**Suitability**: ⭐⭐⭐ (Good if Serena always available)
---
### Option B: Remove Serena References (Clarify Reality)
**Implementation**:
```yaml
Update pm.md:
- Remove lines 15, 119, 127-191 (Serena references)
- Explicitly document repository-scoped local file approach
- Clarify: "PM Agent uses transparent file-based memory"
- Update: "Session Lifecycle (Repository-Scoped Local Files)"
Benefits Already in Place:
- Transparent, Git-manageable
- No external dependencies
- Human-readable formats
- Automatic isolation via git boundary
```
**Benefits**:
- Documentation matches reality
- No dependency on external services
- Transparent and auditable
- Simple implementation
**Drawbacks**:
- Loses semantic understanding capabilities
- No automatic onboarding
- Manual context management
- Misses Serena's thinking tools
**Suitability**: ⭐⭐⭐⭐⭐ (Best for current state)
---
### Option C: Hybrid Approach (Best of Both Worlds)
**Implementation**:
```yaml
Primary Storage: Local files (docs/memory/)
- Always works, no dependencies
- Transparent, Git-manageable
Optional Enhancement: Serena MCP (when available)
- try:
mcp__serena__think_about_task_adherence()
mcp__serena__write_memory("pm_semantic_context", summary)
except:
# Fallback gracefully, continue with local files
pass
Benefits:
- Core functionality always works
- Enhanced capabilities when Serena available
- Graceful degradation
- Future-proof architecture
```
**Benefits**:
- Works with or without Serena
- Leverages semantic understanding when available
- Maintains transparency
- Progressive enhancement
**Drawbacks**:
- More complex implementation
- Dual storage system
- Synchronization considerations
- Increased maintenance burden
**Suitability**: ⭐⭐⭐⭐ (Good for long-term flexibility)
---
## 6. Recommendations
### Immediate Action: **Option B - Clarify Reality** ⭐⭐⭐⭐⭐
**Rationale**:
- Documentation-reality mismatch is causing confusion
- Current file-based approach works well
- No evidence Serena MCP is actually being used
- Simple fix with immediate clarity improvement
**Implementation Steps**:
1. **Update `superclaude/commands/pm.md`**:
```diff
- ## Session Lifecycle (Serena MCP Memory Integration)
+ ## Session Lifecycle (Repository-Scoped Local Memory)
- 1. Context Restoration:
- - list_memories() → Check for existing PM Agent state
- - read_memory("pm_context") → Restore overall context
+ 1. Context Restoration (from local files):
+ - Read docs/memory/pm_context.md → Project context
+ - Read docs/memory/last_session.md → Previous work
```
2. **Remove MCP Resource Attempt**:
- Document: "Serena exposes tools only, not resources"
- Update: Never attempt `ReadMcpResourceTool` with "serena://memories"
3. **Clarify MCP Integration Section**:
```markdown
### MCP Integration (Optional Enhancement)
**Primary Storage**: Repository-scoped local files (`docs/memory/`)
- Always available, no dependencies
- Transparent, Git-manageable, human-readable
**Optional Serena Integration** (when available via airis-mcp-gateway):
- mcp__serena__think_about_* tools for introspection
- mcp__serena__get_symbols_overview for code understanding
- mcp__serena__write_memory for semantic summaries
```
### Future Enhancement: **Option C - Hybrid Approach** ⭐⭐⭐⭐
**When**: After Option B is implemented and stable
**Rationale**:
- Provides progressive enhancement
- Leverages Serena when available
- Maintains core functionality without dependencies
**Implementation Priority**: Low (current system works)
---
## 7. Evidence Sources
### Official Documentation
- **Serena GitHub**: https://github.com/oraios/serena
- **Serena MCP Registry**: https://mcp.so/server/serena/oraios
- **Tool Documentation**: https://glama.ai/mcp/servers/@oraios/serena/schema
- **Memory Discussion**: https://github.com/oraios/serena/discussions/297
### Best Practices
- **MCP Memory Integration**: https://www.byteplus.com/en/topic/541419
- **Memory Management**: https://research.aimultiple.com/memory-mcp/
- **MCP Resources vs Tools**: https://medium.com/@laurentkubaski/mcp-resources-explained-096f9d15f767
### Community Insights
- **Serena Deep Dive**: https://skywork.ai/skypage/en/Serena MCP Server: A Deep Dive for AI Engineers/1970677982547734528
- **Implementation Guide**: https://apidog.com/blog/serena-mcp-server/
- **Usage Examples**: https://lobehub.com/mcp/oraios-serena
---
## 8. Conclusion
**Current State**: PM Agent uses repository-scoped local files, NOT Serena MCP memory management.
**Problem**: Documentation references Serena tools that are never called, creating confusion.
**Solution**: Clarify documentation to match reality (Option B), with optional future enhancement (Option C).
**Action Required**: Update `superclaude/commands/pm.md` to remove Serena references and explicitly document file-based memory approach.
**Confidence**: High (90%) - Evidence-based analysis with official documentation verification.