- Transform 28K+ token superclaude-user-guide.md into 4.5K token overview (84% reduction) - Extract specialized guides: examples-cookbook.md, troubleshooting-guide.md, best-practices.md, session-management.md, technical-architecture.md - Add comprehensive cross-references between all guides for improved navigation - Maintain professional documentation quality with technical-writer agent approach - Remove template files and consolidate agent naming (backend-engineer → backend-architect, etc.) - Update all existing guides with cross-references and related guides sections - Create logical learning paths from beginner to advanced users - Eliminate content duplication while preserving all valuable information 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
38 KiB
SuperClaude Technical Architecture Guide
Version: V4 Beta
Target Audience: Advanced users, contributors, and technical stakeholders
Purpose: Understanding SuperClaude's orchestrator system and internal architecture
Table of Contents
- Architecture Overview
- Detection Engine
- Routing Intelligence
- Quality Framework
- Performance System
- Agent Coordination
- MCP Integration
- Configuration
- Extensibility
- Technical Reference
Architecture Overview
SuperClaude V4 implements a sophisticated orchestrator system that intelligently routes tasks, manages resources, and coordinates between multiple specialized components. The architecture follows a multi-layered orchestration pattern with clear separation between detection, routing, execution, and validation phases.
Core Components
┌─────────────────────────────────────────────────────────────┐
│ ORCHESTRATOR CORE │
├─────────────────────────────────────────────────────────────┤
│ Detection Engine │ Routing Intelligence │ Quality Gates │
├─────────────────────────────────────────────────────────────┤
│ Agent Layer │ MCP Layer │
├─────────────────────────────────────────────────────────────┤
│ Command Interface │ Session Management │
├─────────────────────────────────────────────────────────────┤
│ Component Registry │
└─────────────────────────────────────────────────────────────┘
System Design Principles
- Intelligent Adaptation: Automatic detection and optimization based on task complexity and resource constraints
- Hierarchical Delegation: Multi-level task breakdown with appropriate specialization
- Resource Awareness: Dynamic adaptation to performance constraints and context limitations
- Quality First: Comprehensive validation gates and quality assurance at every level
- Extensible Architecture: Component-based design enabling easy extension and customization
Architecture Layers
Detection Layer: Pattern recognition and trigger analysis for automatic mode activation
Routing Layer: Intelligent decision matrices for optimal tool and agent selection
Execution Layer: Coordinated task execution with parallel processing capabilities
Validation Layer: Quality gates and comprehensive result verification
Management Layer: Session persistence, configuration, and cross-session continuity
Detection Engine
The detection engine implements sophisticated pattern recognition to automatically activate appropriate behavioral modes and routing decisions. It operates through a multi-tier trigger system with explicit priority rules and conflict resolution.
Trigger Architecture
Input Analysis
↓
Pattern Recognition (Lexical + Semantic + Context)
↓
Priority Resolution (Critical > Important > Recommended)
↓
Mode Activation + Flag Setting
↓
Routing Decision Matrix
Detection Patterns
Lexical Triggers
- Keywords: Direct command words (
brainstorm,analyze,implement) - Uncertainty Markers:
maybe,thinking about,not sure,could we - Complexity Indicators:
complex,multi-step,system-wide,enterprise - Performance Keywords:
optimize,efficient,parallel,resource
Semantic Analysis
- Scope Detection: File count (>3 triggers task-manage), directory depth, project complexity
- Domain Recognition: UI/frontend, backend/API, testing, security, infrastructure patterns
- Complexity Assessment: Multi-component dependencies, cross-system integration needs
Context Awareness
- Resource Monitoring: Context usage percentage, token consumption patterns
- Session State: Previous operations, accumulated complexity, fatigue indicators
- Environment Detection: Production vs development, critical vs experimental contexts
Auto-Activation Logic
The detection engine uses weighted scoring with configurable thresholds:
# Conceptual scoring algorithm
def calculate_activation_score(input_text, context):
score = 0
# Lexical weight (30%)
score += lexical_pattern_match(input_text) * 0.3
# Semantic weight (40%)
score += semantic_complexity_analysis(input_text) * 0.4
# Context weight (30%)
score += context_awareness_factors(context) * 0.3
return score
# Activation thresholds
THRESHOLDS = {
"brainstorm": 0.6,
"task-manage": 0.7,
"orchestrate": 0.75,
"introspect": 0.8,
"token-efficient": 0.85
}
Priority Resolution Rules
- Safety First:
--safe-mode>--validate> optimization flags - Explicit Override: User-specified flags > auto-detection
- Depth Hierarchy:
--ultrathink>--think-hard>--think - MCP Control:
--no-mcpoverrides all individual MCP flags - Scope Precedence:
system>project>module>file
Routing Intelligence
The routing intelligence system implements a dynamic decision matrix that selects optimal tools, agents, and execution strategies based on task characteristics and system constraints.
Decision Matrix Architecture
Task Analysis
↓
Tool Selection Matrix → Agent Selection Matrix → MCP Selection Matrix
↓ ↓ ↓
Resource Assessment → Parallel Opportunity → Quality Requirements
↓
Execution Strategy (Sequential/Parallel/Delegated)
↓
Performance Optimization (Batch/Stream/Cache)
Master Routing Table
| Task Type | Primary Tool | Backup Tool | Agent | MCP Server | Parallelizable |
|---|---|---|---|---|---|
| UI Components | Magic MCP | Manual coding | Frontend | Magic | No |
| Deep Analysis | Sequential MCP | Native reasoning | Architect | Sequential | No |
| Symbol Operations | Serena MCP | Manual search | Backend | Serena | Yes |
| Pattern Edits | Morphllm MCP | Individual edits | Refactoring | Morphllm | Yes |
| Documentation | Context7 MCP | Web search | Technical Writer | Context7 | Yes |
| Browser Testing | Playwright MCP | Unit tests | QA | Playwright | No |
| Multi-file Edits | MultiEdit | Sequential Edits | Multiple | Various | Yes |
Coordination Patterns
Sequential Coordination
Used for tasks with strict dependencies:
Task A (prerequisite) → Task B (depends on A) → Task C (depends on B)
Parallel Coordination
Used for independent operations:
Task A ─┐
Task B ─┼─→ Synchronization Point → Next Phase
Task C ─┘
Hierarchical Delegation
Used for complex multi-domain tasks:
Epic Level (System Architect)
├─ Story 1 (Backend Architect)
│ ├─ Task 1.1 (Python Expert)
│ └─ Task 1.2 (Security Engineer)
└─ Story 2 (Frontend Architect)
├─ Task 2.1 (UI/UX)
└─ Task 2.2 (Performance Engineer)
Resource-Aware Routing
The routing system adapts based on resource availability:
Green Zone (0-75% resource usage)
- Full capability routing enabled
- All MCP servers available
- Normal verbosity and detail levels
- Parallel execution preferred
Yellow Zone (75-85% resource usage)
- Efficiency mode activation
- Selective MCP server usage
- Reduced verbosity
- Batch operations prioritized
Red Zone (85%+ resource usage)
- Essential operations only
- Native tools preferred over MCP
- Minimal output generation
- Fail-fast on complex requests
Quality Framework
SuperClaude implements a comprehensive multi-gate quality system with validation checkpoints throughout the execution pipeline.
Quality Gate Architecture
Pre-Execution Gates
↓
Execution Monitoring
↓
Post-Execution Validation
↓
Quality Metrics Collection
↓
Continuous Improvement Feedback
Validation Gates
Gate 1: Pre-Execution Validation
- Scope Validation: Task scope vs capability assessment
- Resource Validation: Available resources vs requirements
- Dependency Validation: Prerequisites and component availability
- Risk Assessment: Potential failure modes and mitigation strategies
Gate 2: Execution Monitoring
- Progress Tracking: Task completion percentage and milestone validation
- Quality Metrics: Code quality, test coverage, documentation completeness
- Performance Monitoring: Resource usage, execution time, efficiency metrics
- Error Detection: Real-time failure detection and recovery triggers
Gate 3: Post-Execution Validation
- Completeness Verification: All requirements satisfied
- Quality Standards: Code standards, documentation quality, test coverage
- Integration Testing: Component interaction and system integration
- Performance Validation: Performance benchmarks and optimization verification
Quality Standards Framework
Code Quality Standards
quality_standards:
code:
no_partial_features: true
no_todo_comments: true
no_mock_implementations: true
completion_required: true
testing:
never_skip_tests: true
never_disable_validation: true
root_cause_analysis: required
documentation:
evidence_based_claims: true
realistic_assessments: true
professional_language: true
Quality Metrics
- Functional Quality: Correctness, reliability, feature completeness
- Structural Quality: Code organization, maintainability, technical debt
- Performance Quality: Speed, scalability, resource efficiency
- Security Quality: Vulnerability management, access control, data protection
Validation Algorithms
# Quality assessment algorithm
def assess_quality(component, standards):
scores = {
'functional': assess_functional_quality(component),
'structural': assess_structural_quality(component),
'performance': assess_performance_quality(component),
'security': assess_security_quality(component)
}
# Weighted overall score
weights = {'functional': 0.4, 'structural': 0.3, 'performance': 0.2, 'security': 0.1}
overall_score = sum(scores[key] * weights[key] for key in scores)
return overall_score >= standards.minimum_threshold
Performance System
The performance system implements adaptive resource management with intelligent optimization strategies based on system constraints and execution requirements.
Resource Management Architecture
Resource Monitoring
↓
Performance Profiling
↓
Optimization Strategy Selection
↓
Execution Adaptation
↓
Performance Feedback Loop
Performance Optimization Strategies
Parallel Execution Engine
# Parallelization decision logic
def optimize_execution(tasks, resources):
if len(tasks) >= 3 and resources.cpu_available > 0.5:
return ParallelExecution(tasks, max_workers=min(len(tasks), resources.max_workers))
else:
return SequentialExecution(tasks)
Batch Operation Optimization
- Read Batching: Multiple file reads in single operation
- Edit Batching: MultiEdit for 3+ file changes
- Search Batching: Grouped search operations with result aggregation
- MCP Batching: Combined MCP server operations for efficiency
Token Efficiency System
Implements symbol-enhanced communication for 30-50% token reduction:
Standard Communication → Symbol Translation → Compressed Output
↓ ↓ ↓
"Authentication system → "auth.js:45 → 🛡️ sec risk in
has security → → 🛡️ security → user val()"
vulnerability in → risk in user →
user validation" → validation" →
Concurrency Management
Concurrency Control Patterns
concurrency_limits:
file_operations: 5
mcp_servers: 3
agent_coordination: 2
analysis_depth: 1 # Sequential for deep analysis
delegation_triggers:
directories: "> 7"
files: "> 50"
complexity_score: "> 0.8"
Resource Allocation Strategy
class ResourceManager:
def allocate_resources(self, task_complexity, available_resources):
if task_complexity > 0.8:
return {
'mcp_servers': 'all',
'parallel_workers': min(15, available_resources.max_workers),
'delegation_mode': 'auto'
}
elif task_complexity > 0.5:
return {
'mcp_servers': ['sequential', 'context7'],
'parallel_workers': min(5, available_resources.max_workers),
'delegation_mode': 'files'
}
else:
return {
'mcp_servers': ['context7'],
'parallel_workers': 1,
'delegation_mode': 'disabled'
}
Agent Coordination
SuperClaude implements a hierarchical agent system with intelligent coordination patterns and specialized domain expertise.
Agent Architecture
System Architect (Strategic Level)
↓
Domain Specialists (Tactical Level)
├─ Backend Architect ├─ Frontend Architect ├─ Security Engineer
├─ DevOps Architect ├─ Performance Engineer ├─ Quality Engineer
└─ Data Architect └─ Python Expert └─ Requirements Analyst
↓
Task Executors (Operational Level)
Coordination Patterns
Multi-Persona Coordination
Complex tasks activate multiple agents with clear responsibility boundaries:
task_coordination:
epic_level:
primary: system-architect
secondary: [requirements-analyst, technical-writer]
story_level:
frontend: [frontend-architect, performance-engineer]
backend: [backend-architect, security-engineer, python-expert]
devops: [devops-architect, quality-engineer]
task_level:
implementation: domain-specific-expert
validation: quality-engineer
documentation: technical-writer
Agent Selection Matrix
| Task Domain | Primary Agent | Supporting Agents | Coordination Pattern |
|---|---|---|---|
| Architecture Design | System Architect | Requirements Analyst, Technical Writer | Strategic → Tactical |
| Frontend Development | Frontend Architect | Performance Engineer, Quality Engineer | Parallel → Integration |
| Backend Development | Backend Architect | Security Engineer, Python Expert | Sequential → Validation |
| Infrastructure | DevOps Architect | Security Engineer, Performance Engineer | Parallel → Deployment |
| Security Analysis | Security Engineer | System Architect, Quality Engineer | Analysis → Implementation |
Agent Communication Protocols
Inter-Agent Message Format
{
"from": "system-architect",
"to": "backend-architect",
"task_id": "auth-system-001",
"priority": "high",
"context": {
"architectural_decisions": [...],
"constraints": [...],
"requirements": [...]
},
"deliverables": ["api_design", "security_model", "performance_requirements"]
}
Coordination Lifecycle
- Task Analysis: System Architect analyzes requirements and creates breakdown
- Agent Assignment: Routing intelligence assigns domain specialists
- Parallel Execution: Agents execute assigned tasks with progress coordination
- Integration Review: Results integrated and validated by coordinating agent
- Quality Validation: Quality Engineer performs final validation and sign-off
MCP Integration
The MCP (Model Context Protocol) integration system provides specialized external capabilities through intelligent server coordination and optimal task routing.
MCP Server Architecture
SuperClaude Core
↓
MCP Router (Selection & Coordination)
↓
┌─────────────┬─────────────┬─────────────┬─────────────┐
│ Context7 │ Sequential │ Magic │ Playwright │
│ (Docs) │ (Analysis) │ (UI/UX) │ (Testing) │
├─────────────┼─────────────┼─────────────┼─────────────┤
│ Morphllm │ Serena │ WebSearch │ Custom │
│ (Transform) │ (Memory) │ (Fallback) │ (Extended) │
└─────────────┴─────────────┴─────────────┴─────────────┘
MCP Server Capabilities
Context7 MCP Server
Purpose: Official library documentation and framework patterns
- Triggers: Import statements, framework keywords, version-specific needs
- Capabilities: Curated documentation lookup, official pattern guidance
- Integration: Works with Sequential for implementation strategy
Sequential MCP Server
Purpose: Multi-step reasoning for complex analysis
- Triggers:
--think,--think-hard,--ultrathinkflags, complex debugging - Capabilities: Systematic analysis, hypothesis testing, architectural review
- Integration: Coordinates with all other MCP servers for structured workflows
Magic MCP Server
Purpose: Modern UI component generation from 21st.dev patterns
- Triggers: UI component requests,
/ui,/21commands, design system needs - Capabilities: Production-ready accessible components, design system integration
- Integration: Uses Context7 for framework patterns, Sequential for UI logic
Playwright MCP Server
Purpose: Browser automation and E2E testing
- Triggers: Browser testing, visual validation, accessibility testing
- Capabilities: Real browser interaction, screenshot comparison, WCAG compliance
- Integration: Sequential plans testing strategy, Magic validates UI behavior
Morphllm MCP Server
Purpose: Pattern-based code editing with token optimization
- Triggers: Multi-file edits, style enforcement, bulk transformations
- Capabilities: 30-50% efficiency gains, pattern-based transformations
- Integration: Serena provides semantic context, Sequential plans edit strategy
Serena MCP Server
Purpose: Semantic code understanding with project memory
- Triggers: Symbol operations, session lifecycle, large codebase navigation
- Capabilities: LSP integration, cross-session persistence, dependency tracking
- Integration: Provides context for Morphllm edits, maintains session state
MCP Coordination Patterns
Server Selection Algorithm
def select_mcp_servers(task_type, complexity, resource_constraints):
base_servers = []
# Task-specific server selection
if 'ui' in task_type:
base_servers.extend(['magic', 'context7'])
elif 'analysis' in task_type:
base_servers.extend(['sequential', 'context7'])
elif 'testing' in task_type:
base_servers.extend(['playwright', 'sequential'])
elif 'editing' in task_type:
base_servers.extend(['morphllm', 'serena'])
# Complexity-based augmentation
if complexity > 0.7:
base_servers.append('sequential')
if complexity > 0.8:
base_servers.extend(['context7', 'serena'])
# Resource constraint filtering
if resource_constraints.high:
return ['context7'] # Most efficient
elif resource_constraints.medium:
return base_servers[:2] # Limit to 2 servers
else:
return base_servers
Multi-Server Workflows
workflow_patterns:
documentation_generation:
sequence: [context7, sequential, serena]
coordination: "context7 → patterns, sequential → structure, serena → persistence"
ui_development:
sequence: [magic, context7, playwright]
coordination: "magic → components, context7 → framework integration, playwright → testing"
code_refactoring:
sequence: [serena, sequential, morphllm]
coordination: "serena → analysis, sequential → strategy, morphllm → execution"
Configuration
SuperClaude provides extensive configuration capabilities through hierarchical configuration management with component-based customization.
Configuration Architecture
Global Configuration (CLAUDE.md)
↓
Mode-Specific Configuration (MODE_*.md)
↓
Component Configuration (Components/*.json)
↓
Session Configuration (Runtime settings)
↓
User Overrides (CLI flags, explicit settings)
Configuration Hierarchy
Global Configuration Layer
Located in ~/.claude/CLAUDE.md:
# Core behavioral rules and principles
@FLAGS.md # Behavioral flags and triggers
@RULES.md # Operational rules and constraints
@PRINCIPLES.md # Engineering principles and guidelines
@MODE_*.md # Behavioral mode configurations
@MCP_*.md # MCP server integrations
Component Configuration Layer
{
"components": {
"core": {
"dependencies": [],
"category": "core",
"enabled": true,
"config": {
"validation_level": "standard",
"error_tolerance": "low"
}
},
"mcp": {
"dependencies": ["core"],
"category": "integration",
"enabled": true,
"config": {
"servers": ["context7", "sequential"],
"fallback": "websearch",
"timeout": 30
}
}
}
}
Flag Configuration System
Flag Categories and Priority
flag_priorities:
critical: 100 # --safe-mode, --validate
mode_control: 80 # --brainstorm, --orchestrate
mcp_control: 60 # --seq, --magic, --no-mcp
analysis_depth: 40 # --think, --think-hard, --ultrathink
optimization: 20 # --uc, --parallel, --focus
conflict_resolution:
safety_first: "--safe-mode overrides all optimization"
explicit_override: "user flags > auto-detection"
depth_hierarchy: "--ultrathink > --think-hard > --think"
mcp_override: "--no-mcp overrides individual MCP flags"
Custom Flag Configuration
class CustomFlag:
def __init__(self, name, triggers, behavior, priority):
self.name = name
self.triggers = triggers # List of trigger patterns
self.behavior = behavior # Behavioral modifications
self.priority = priority # Conflict resolution priority
def should_activate(self, input_text, context):
return any(trigger.match(input_text, context) for trigger in self.triggers)
Performance Configuration
Resource Management Settings
performance_config:
resource_thresholds:
green_zone: 0.75 # Full capabilities
yellow_zone: 0.85 # Efficiency mode
red_zone: 0.95 # Essential only
concurrency_limits:
max_parallel_tasks: 15
max_mcp_servers: 6
max_agent_coordination: 3
optimization_settings:
token_efficiency_threshold: 0.75
batch_operation_minimum: 3
parallel_execution_minimum: 3
Mode Configuration
Each behavioral mode has dedicated configuration:
# MODE_Orchestration.md configuration
orchestration_config:
activation_triggers:
- "multi_tool_operations"
- "performance_constraints > 0.75"
- "parallel_opportunities > 3"
tool_selection_matrix:
ui_components: ["magic_mcp", "manual_coding"]
deep_analysis: ["sequential_mcp", "native_reasoning"]
symbol_operations: ["serena_mcp", "manual_search"]
resource_zones:
green: {capabilities: "full", verbosity: "normal"}
yellow: {capabilities: "selective", verbosity: "reduced"}
red: {capabilities: "essential", verbosity: "minimal"}
Extensibility
SuperClaude's architecture is designed for modular extensibility with well-defined interfaces and plugin patterns.
Extension Architecture
Extension Framework
├─ Component Extensions (New component types)
├─ Agent Extensions (New specialized agents)
├─ MCP Extensions (New MCP server integrations)
├─ Mode Extensions (New behavioral modes)
├─ Command Extensions (New slash commands)
└─ Quality Extensions (New validation rules)
Component Extension Pattern
Creating New Components
from setup.core.base import Component
class CustomComponent(Component):
def get_metadata(self):
return {
"name": "custom-component",
"description": "Custom functionality",
"category": "extension",
"version": "1.0.0"
}
def get_dependencies(self):
return ["core"] # Required dependencies
def validate_prerequisites(self):
# Custom validation logic
return True, []
def install(self, config):
# Installation implementation
return True
def validate_installation(self):
# Post-install validation
return True, []
Component Registration
Components are auto-discovered through the registry system:
# Components placed in setup/components/ are automatically discovered
registry = ComponentRegistry(Path("setup/components"))
registry.discover_components()
components = registry.list_components() # Includes custom components
Agent Extension Pattern
Creating Specialized Agents
---
name: custom-specialist
description: "Specialized domain expert for custom functionality"
category: domain-expert
tools: Read, Write, Bash, CustomTool
---
# Custom Specialist Agent
## Triggers
- Domain-specific keywords and patterns
- Custom task requirements
- Specialized analysis needs
## Behavioral Mindset
Specialized focus on custom domain with deep expertise and optimization patterns.
## Focus Areas
- Custom domain analysis
- Specialized pattern recognition
- Domain-specific optimization
## Key Actions
1. Domain Analysis
2. Pattern Application
3. Optimization Implementation
4. Quality Validation
5. Knowledge Transfer
## Outputs
- Domain-specific analysis
- Specialized implementations
- Optimization recommendations
- Pattern documentation
MCP Server Extension
Custom MCP Integration
class CustomMCPIntegration:
def __init__(self, server_config):
self.server_config = server_config
self.capabilities = self._discover_capabilities()
def get_triggers(self):
return [
"custom_domain_keywords",
"specialized_task_patterns",
"domain_specific_flags"
]
def should_activate(self, task_analysis):
return any(trigger in task_analysis.keywords
for trigger in self.get_triggers())
def coordinate_with(self, other_servers):
# Define coordination patterns with existing MCP servers
return {
'sequential': 'analysis_provider',
'context7': 'pattern_consumer',
'serena': 'memory_integration'
}
Mode Extension Pattern
Custom Behavioral Mode
class CustomMode:
def __init__(self):
self.name = "custom-mode"
self.activation_triggers = [
"custom_keywords",
"specific_context_patterns",
"domain_flags"
]
def should_activate(self, context):
return self._analyze_triggers(context)
def modify_behavior(self, base_behavior):
return {
**base_behavior,
'specialized_processing': True,
'custom_validation': self._custom_validation,
'domain_optimization': self._domain_optimization
}
Command Extension
Custom Slash Command
---
name: custom-command
description: "Custom specialized command for domain-specific tasks"
category: domain
complexity: advanced
mcp-servers: [custom-mcp, sequential]
personas: [custom-specialist, quality-engineer]
---
# /sc:custom - Custom Command
## Triggers
- Domain-specific requirements
- Specialized task patterns
- Custom workflow needs
## Usage
/sc:custom [target] [--custom-flag] [--domain-specific]
## Behavioral Flow
1. Domain Analysis
2. Specialized Processing
3. Custom Validation
4. Integration Testing
5. Documentation Generation
Quality Extension
Custom Validation Rules
class CustomQualityGate:
def __init__(self, standards):
self.standards = standards
self.validation_rules = self._load_custom_rules()
def validate(self, component, context):
results = []
for rule in self.validation_rules:
result = rule.validate(component, context)
results.append(result)
return self._aggregate_results(results)
def _load_custom_rules(self):
# Load domain-specific validation rules
return [
CustomRule1(),
CustomRule2(),
DomainSpecificRule()
]
Technical Reference
APIs and Interfaces
Component Interface
class Component(ABC):
@abstractmethod
def get_metadata(self) -> Dict[str, str]:
"""Return component metadata"""
pass
@abstractmethod
def get_dependencies(self) -> List[str]:
"""Return list of dependency component names"""
pass
@abstractmethod
def validate_prerequisites(self) -> Tuple[bool, List[str]]:
"""Validate system prerequisites"""
pass
@abstractmethod
def install(self, config: Dict[str, Any]) -> bool:
"""Install the component"""
pass
@abstractmethod
def validate_installation(self) -> Tuple[bool, List[str]]:
"""Validate successful installation"""
pass
Registry Interface
class ComponentRegistry:
def discover_components(self, force_reload: bool = False) -> None
def get_component_class(self, component_name: str) -> Optional[Type[Component]]
def resolve_dependencies(self, component_names: List[str]) -> List[str]
def get_installation_order(self, component_names: List[str]) -> List[List[str]]
def validate_dependency_graph(self) -> List[str]
Installer Interface
class Installer:
def register_component(self, component: Component) -> None
def resolve_dependencies(self, component_names: List[str]) -> List[str]
def validate_system_requirements(self) -> Tuple[bool, List[str]]
def install_components(self, component_names: List[str], config: Dict[str, Any]) -> bool
def create_backup(self) -> Optional[Path]
Implementation Details
Flag Processing Algorithm
def process_flags(input_text, context, user_flags):
detected_flags = detect_automatic_flags(input_text, context)
combined_flags = merge_flags(detected_flags, user_flags)
resolved_flags = resolve_conflicts(combined_flags)
return apply_priority_rules(resolved_flags)
def detect_automatic_flags(input_text, context):
flags = []
# Complexity analysis
if count_files(context) > 3:
flags.append('task-manage')
# Resource analysis
if context.resource_usage > 0.75:
flags.append('token-efficient')
# Domain analysis
if 'ui' in input_text.lower():
flags.append('magic')
return flags
Resource Management Algorithm
class ResourceManager:
def __init__(self):
self.thresholds = {
'green': 0.75,
'yellow': 0.85,
'red': 0.95
}
def get_resource_zone(self, usage_metrics):
total_usage = self._calculate_total_usage(usage_metrics)
if total_usage <= self.thresholds['green']:
return 'green'
elif total_usage <= self.thresholds['yellow']:
return 'yellow'
else:
return 'red'
def adapt_execution_strategy(self, zone, task_requirements):
strategies = {
'green': FullCapabilityStrategy(),
'yellow': EfficiencyStrategy(),
'red': EssentialOnlyStrategy()
}
return strategies[zone].adapt(task_requirements)
Quality Assessment Framework
class QualityFramework:
def __init__(self):
self.gates = [
PreExecutionGate(),
ExecutionMonitoringGate(),
PostExecutionGate()
]
def assess_quality(self, component, phase):
gate = self._get_gate_for_phase(phase)
assessment = gate.assess(component)
return QualityAssessment(
score=assessment.score,
passes_gate=assessment.score >= gate.threshold,
recommendations=assessment.recommendations,
required_actions=assessment.required_actions
)
Performance Metrics
Key Performance Indicators
performance_metrics:
orchestration_efficiency:
parallel_task_ratio: "> 0.6" # 60%+ tasks run in parallel
resource_utilization: "0.7-0.85" # Optimal resource usage
coordination_overhead: "< 0.1" # <10% overhead from coordination
quality_metrics:
validation_pass_rate: "> 0.95" # 95%+ pass validation gates
error_recovery_rate: "> 0.9" # 90%+ successful error recovery
completion_rate: "> 0.98" # 98%+ successful task completion
efficiency_metrics:
token_efficiency_gain: "0.3-0.5" # 30-50% token reduction
execution_time_improvement: "> 0.4" # 40%+ faster execution
cache_hit_rate: "> 0.8" # 80%+ cache utilization
Monitoring and Observability
class PerformanceMonitor:
def collect_metrics(self, execution_context):
return ExecutionMetrics(
parallel_ratio=self._calculate_parallel_ratio(execution_context),
resource_efficiency=self._measure_resource_efficiency(execution_context),
quality_score=self._assess_quality_score(execution_context),
token_efficiency=self._measure_token_efficiency(execution_context)
)
def generate_performance_report(self, metrics_history):
return PerformanceReport(
trends=self._analyze_trends(metrics_history),
bottlenecks=self._identify_bottlenecks(metrics_history),
optimization_opportunities=self._find_optimizations(metrics_history),
recommendations=self._generate_recommendations(metrics_history)
)
Conclusion
SuperClaude's technical architecture implements a sophisticated orchestration system that intelligently coordinates between detection, routing, execution, and validation layers. The modular design enables extensive customization while maintaining quality and performance standards.
Key architectural strengths:
- Intelligent Adaptation: Automatic optimization based on task complexity and resource constraints
- Quality-First Design: Comprehensive validation gates ensure consistent high-quality outcomes
- Extensible Framework: Well-defined interfaces enable easy extension and customization
- Performance Optimization: Resource-aware execution with parallel processing and efficiency optimizations
- Coordinated Expertise: Multi-agent coordination with specialized domain knowledge
This architecture provides a robust foundation for complex AI-assisted development workflows while remaining accessible for customization and extension by advanced users and contributors.
Related Guides
🚀 Prerequisites (Start Here First)
- Installation Guide - Ensure complete installation for architecture exploration
- SuperClaude User Guide - High-level architecture concepts
- Examples Cookbook - See the architecture in action
📚 User-Facing Architecture (Understanding the Surface)
- Commands Guide - Command processing and routing system
- Agents Guide - Agent coordination and selection algorithms
- Behavioral Modes Guide - Mode detection and activation system
- Session Management Guide - Memory and persistence architecture
⚙️ Implementation Details (Power Users)
- Flags Guide - Flag processing and conflict resolution algorithms
- Best Practices Guide - Optimization patterns and performance techniques
🔧 Practical Application
- Troubleshooting Guide - Understanding failure modes and diagnostics
📖 Recommended Reading Path:
- SuperClaude User Guide - Conceptual foundation
- Commands Guide - User interface layer understanding
- This guide's Architecture Overview - System design
- Detection Engine and Routing Intelligence - Core algorithms
- Extensibility - Customization and contribution opportunities
🎯 Use This Guide For:
- Contributors: Understanding system design for feature development
- Advanced Users: Customization and optimization strategies
- Troubleshooting: Deep understanding of system behavior
- Integration: Building extensions and custom components