* fix(orchestration): add WebFetch auto-trigger for infrastructure configuration Problem: Infrastructure configuration changes (e.g., Traefik port settings) were being made based on assumptions without consulting official documentation, violating the 'Evidence > assumptions' principle in PRINCIPLES.md. Solution: - Added Infrastructure Configuration Validation section to MODE_Orchestration.md - Auto-triggers WebFetch for infrastructure tools (Traefik, nginx, Docker, etc.) - Enforces MODE_DeepResearch activation for investigation - BLOCKS assumption-based configuration changes Testing: Verified WebFetch successfully retrieves Traefik official docs (port 80 default) This prevents production outages from infrastructure misconfiguration by ensuring all technical recommendations are backed by official documentation. * feat: Add PM Agent (Project Manager Agent) for seamless orchestration Introduces PM Agent as the default orchestration layer that coordinates all sub-agents and manages workflows automatically. Key Features: - Default orchestration: All user interactions handled by PM Agent - Auto-delegation: Intelligent sub-agent selection based on task analysis - Docker Gateway integration: Zero-token baseline with dynamic MCP loading - Self-improvement loop: Automatic documentation of patterns and mistakes - Optional override: Users can specify sub-agents explicitly if desired Architecture: - Agent spec: SuperClaude/Agents/pm-agent.md - Command: SuperClaude/Commands/pm.md - Updated docs: README.md (15→16 agents), agents.md (new Orchestration category) User Experience: - Default: PM Agent handles everything (seamless, no manual routing) - Optional: Explicit --agent flag for direct sub-agent access - Both modes available simultaneously (no user downside) Implementation Status: - ✅ Specification complete - ✅ Documentation complete - ⏳ Prototype implementation needed - ⏳ Docker Gateway integration needed - ⏳ Testing and validation needed Refs: kazukinakai/docker-mcp-gateway (IRIS MCP Gateway integration) * feat: Add Agent Orchestration rules for PM Agent default activation Implements PM Agent as the default orchestration layer in RULES.md. Key Changes: - New 'Agent Orchestration' section (CRITICAL priority) - PM Agent receives ALL user requests by default - Manual override with @agent-[name] bypasses PM Agent - Agent Selection Priority clearly defined: 1. Manual override → Direct routing 2. Default → PM Agent → Auto-delegation 3. Delegation based on keywords, file types, complexity, context User Experience: - Default: PM Agent handles everything (seamless) - Override: @agent-[name] for direct specialist access - Transparent: PM Agent reports delegation decisions This establishes PM Agent as the orchestration layer while respecting existing auto-activation patterns and manual overrides. Next Steps: - Local testing in agiletec project - Iteration based on actual behavior - Documentation updates as needed * refactor(pm-agent): redesign as self-improvement meta-layer Problem Resolution: PM Agent's initial design competed with existing auto-activation for task routing, creating confusion about orchestration responsibilities and adding unnecessary complexity. Design Change: Redefined PM Agent as a meta-layer agent that operates AFTER specialist agents complete tasks, focusing on: - Post-implementation documentation and pattern recording - Immediate mistake analysis with prevention checklists - Monthly documentation maintenance and noise reduction - Pattern extraction and knowledge synthesis Two-Layer Orchestration System: 1. Task Execution Layer: Existing auto-activation handles task routing (unchanged) 2. Self-Improvement Layer: PM Agent meta-layer handles documentation (new) Files Modified: - SuperClaude/Agents/pm-agent.md: Complete rewrite with meta-layer design - Category: orchestration → meta - Triggers: All user interactions → Post-implementation, mistakes, monthly - Behavioral Mindset: Continuous learning system - Self-Improvement Workflow: BEFORE/DURING/AFTER/MISTAKE RECOVERY/MAINTENANCE - SuperClaude/Core/RULES.md: Agent Orchestration section updated - Split into Task Execution Layer + Self-Improvement Layer - Added orchestration flow diagram - Clarified PM Agent activates AFTER task completion - README.md: Updated PM Agent description - "orchestrates all interactions" → "ensures continuous learning" - Docs/User-Guide/agents.md: PM Agent section rewritten - Section: Orchestration Agent → Meta-Layer Agent - Expertise: Project orchestration → Self-improvement workflow executor - Examples: Task coordination → Post-implementation documentation - PR_DOCUMENTATION.md: Comprehensive PR documentation added - Summary, motivation, changes, testing, breaking changes - Two-layer orchestration system diagram - Verification checklist Integration Validated: Tested with agiletec project's self-improvement-workflow.md: ✅ PM Agent aligns with existing BEFORE/DURING/AFTER/MISTAKE RECOVERY phases ✅ Complements (not competes with) existing workflow ✅ agiletec workflow defines WHAT, PM Agent defines WHO executes it Breaking Changes: None - Existing auto-activation continues unchanged - Specialist agents unaffected - User workflows remain the same - New capability: Automatic documentation and knowledge maintenance Value Proposition: Transforms SuperClaude into a continuously learning system that accumulates knowledge, prevents recurring mistakes, and maintains fresh documentation without manual intervention. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: add Claude Code conversation history management research Research covering .jsonl file structure, performance impact, and retention policies. Content: - Claude Code .jsonl file format and message types - Performance issues from GitHub (memory leaks, conversation compaction) - Retention policies (consumer vs enterprise) - Rotation recommendations based on actual data - File history snapshot tracking mechanics Source: Moved from agiletec project (research applicable to all Claude Code projects) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: add Development documentation structure Phase 1: Documentation Structure complete - Add Docs/Development/ directory for development documentation - Add ARCHITECTURE.md - System architecture with PM Agent meta-layer - Add ROADMAP.md - 5-phase development plan with checkboxes - Add TASKS.md - Daily task tracking with progress indicators - Add PROJECT_STATUS.md - Current status dashboard and metrics - Add pm-agent-integration.md - Implementation guide for PM Agent mode This establishes comprehensive documentation foundation for: - System architecture understanding - Development planning and tracking - Implementation guidance - Progress visibility Related: #pm-agent-mode #documentation #phase-1 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: PM Agent session lifecycle and PDCA implementation Phase 2: PM Agent Mode Integration (Design Phase) Commands/pm.md updates: - Add "Always-Active Foundation Layer" concept - Add Session Lifecycle (Session Start/During Work/Session End) - Add PDCA Cycle (Plan/Do/Check/Act) automation - Add Serena MCP Memory Integration (list/read/write_memory) - Document auto-activation triggers Agents/pm-agent.md updates: - Add Session Start Protocol (MANDATORY auto-activation) - Add During Work PDCA Cycle with example workflows - Add Session End Protocol with state preservation - Add PDCA Self-Evaluation Pattern - Add Documentation Strategy (temp → patterns/mistakes) - Add Memory Operations Reference Key Features: - Session start auto-activation for context restoration - 30-minute checkpoint saves during work - Self-evaluation with think_about_* operations - Systematic documentation lifecycle - Knowledge evolution to CLAUDE.md Implementation Status: - ✅ Design complete (Commands/pm.md, Agents/pm-agent.md) - ⏳ Implementation pending (Core components) - ⏳ Serena MCP integration pending Salvaged from mistaken development in ~/.claude directory Related: #pm-agent-mode #session-lifecycle #pdca-cycle #phase-2 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * fix: disable Serena MCP auto-browser launch Disable web dashboard and GUI log window auto-launch in Serena MCP server to prevent intrusive browser popups on startup. Users can still manually access the dashboard at http://localhost:24282/dashboard/ if needed. Changes: - Add CLI flags to Serena run command: - --enable-web-dashboard false - --enable-gui-log-window false - Ensures Git-tracked configuration (no reliance on ~/.serena/serena_config.yml) - Aligns with AIRIS MCP Gateway integration approach 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: rename directories to lowercase for PEP8 compliance - Rename superclaude/Agents -> superclaude/agents - Rename superclaude/Commands -> superclaude/commands - Rename superclaude/Core -> superclaude/core - Rename superclaude/Examples -> superclaude/examples - Rename superclaude/MCP -> superclaude/mcp - Rename superclaude/Modes -> superclaude/modes This change follows Python PEP8 naming conventions for package directories. * style: fix PEP8 violations and update package name to lowercase Changes: - Format all Python files with black (43 files reformatted) - Update package name from 'SuperClaude' to 'superclaude' in pyproject.toml - Fix import statements to use lowercase package name - Add missing imports (timedelta, __version__) - Remove old SuperClaude.egg-info directory PEP8 violations reduced from 2672 to 701 (mostly E501 line length due to black's 88 char vs flake8's 79 char limit). * docs: add PM Agent development documentation Add comprehensive PM Agent development documentation: - PM Agent ideal workflow (7-phase autonomous cycle) - Project structure understanding (Git vs installed environment) - Installation flow understanding (CommandsComponent behavior) - Task management system (current-tasks.md) Purpose: Eliminate repeated explanations and enable autonomous PDCA cycles 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(pm-agent): add self-correcting execution and warning investigation culture ## Changes ### superclaude/commands/pm.md - Add "Self-Correcting Execution" section with root cause analysis protocol - Add "Warning/Error Investigation Culture" section enforcing zero-tolerance for dismissal - Define error detection protocol: STOP → Investigate → Hypothesis → Different Solution → Execute - Document anti-patterns (retry without understanding) and correct patterns (research-first) ### docs/Development/hypothesis-pm-autonomous-enhancement-2025-10-14.md - Add PDCA workflow hypothesis document for PM Agent autonomous enhancement ## Rationale PM Agent must never retry failed operations without understanding root causes. All warnings and errors require investigation via context7/WebFetch/documentation to ensure production-quality code and prevent technical debt accumulation. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(installer): add airis-mcp-gateway MCP server option ## Changes - Add airis-mcp-gateway to MCP server options in installer - Configuration: GitHub-based installation via uvx - Repository: https://github.com/oraios/airis-mcp-gateway - Purpose: Dynamic MCP Gateway for zero-token baseline and on-demand tool loading ## Implementation Added to setup/components/mcp.py self.mcp_servers dictionary with: - install_method: github - install_command: uvx test installation - run_command: uvx runtime execution - required: False (optional server) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local> Co-authored-by: Claude <noreply@anthropic.com>
11 KiB
SuperClaude 命令指南
SuperClaude 为 Claude Code 提供 21 个命令:用于工作流的 /sc:* 命令和用于专家的 @agent-*。
命令类型
| 类型 | 使用位置 | 格式 | 示例 |
|---|---|---|---|
| 斜杠命令 | Claude Code | /sc:[command] |
/sc:implement "feature" |
| 智能体 | Claude Code | @agent-[name] |
@agent-security "review" |
| 安装命令 | 终端 | SuperClaude [command] |
SuperClaude install |
快速测试
# 终端:验证安装
python3 -m SuperClaude --version
# Claude Code CLI 验证:claude --version
# Claude Code:测试命令
/sc:brainstorm "test project" # 应该询问发现性问题
/sc:analyze README.md # 应该提供分析
工作流:/sc:brainstorm "idea" → /sc:implement "feature" → /sc:test
🎯 理解 SuperClaude 命令
SuperClaude 如何工作
SuperClaude 提供行为上下文文件,Claude Code 通过读取这些文件来采用专门的行为。当您键入 /sc:implement 时,Claude Code 读取 implement.md 上下文文件并遵循其行为指令。
SuperClaude 命令不是由软件执行的 - 它们是上下文触发器,通过读取框架中的专门指令文件来修改 Claude Code 的行为。
命令类型:
- 斜杠命令 (
/sc:*):触发工作流模式和行为模式 - 智能体调用 (
@agent-*):手动激活特定领域专家 - 标志 (
--think、--safe-mode):修改命令行为和深度
上下文机制:
- 用户输入:您输入
/sc:implement "auth system" - 上下文加载:Claude Code 读取
~/.claude/superclaude/Commands/implement.md - 行为采用:Claude 运用专业知识进行工具选择和验证
- 增强输出:带有安全考虑和最佳实践的结构化实现
关键要点:这通过上下文管理而不是传统的软件执行来创建复杂的开发工作流。
安装命令 vs 使用命令
🖥️ 终端命令 (实际 CLI 软件):
SuperClaude install- 安装框架组件SuperClaude update- 更新现有安装SuperClaude uninstall- 卸载框架安装python3 -m SuperClaude --version- 检查安装状态
💬 Claude Code 命令 (上下文触发器):
/sc:brainstorm- 激活需求发现上下文/sc:implement- 激活特性开发上下文@agent-security- 激活安全专家上下文- 所有命令仅在 Claude Code 聊天界面中工作
快速开始:尝试
/sc:brainstorm "your project idea"→/sc:implement "feature name"→/sc:test体验核心工作流。
🧪 Testing Your Setup
🖥️ 终端验证(在终端/CMD 中运行)
# 验证 SuperClaude 是否正常工作(主要方法)
python3 -m SuperClaude --version
# 示例输出:SuperClaude 4.1.5
# Claude Code CLI 版本检查
claude --version
# 检查已安装的组件
python3 -m SuperClaude install --list-components | grep mcp
# 示例输出:显示已安装的 MCP 组件
💬 Claude Code 测试(在 Claude Code 聊天中输入)
# 测试基本 /sc: 命令
/sc:brainstorm "test project"
# 示例行为:开始交互式需求发现
# 测试命令帮助
/sc:help
# 示例行为:显示可用命令列表
📝 Command Quick Reference
| Command Type | Where to Run | Format | Purpose | Example |
|---|---|---|---|---|
| 🖥️ 安装 | 终端/CMD | SuperClaude [command] |
设置和维护 | SuperClaude install |
| 🔧 配置 | 终端/CMD | python3 -m SuperClaude [command] |
高级配置 | python3 -m SuperClaude --version |
| 💬 斜杠命令 | Claude Code | /sc:[command] |
工作流自动化 | /sc:implement "feature" |
| 🤖 智能体调用 | Claude Code | @agent-[name] |
手动专家激活 | @agent-security "review" |
| ⚡ 增强标志 | Claude Code | /sc:[command] --flags |
行为修改 | /sc:analyze --think-hard |
记住:所有
/sc:命令和@agent-调用都在 Claude Code 聊天中工作,而不是在您的终端中。它们触发 Claude Code 从 SuperClaude 框架中读取特定的上下文文件。
目录
基本命令
立即提高生产力的核心工作流命令:
/sc:brainstorm - 项目发现
目的:交互式需求发现和项目规划
语法:/sc:brainstorm "您的想法" [--strategy systematic|creative]
使用案例:
- 新项目规划:
/sc:brainstorm "e-commerce platform" - 特性探索:
/sc:brainstorm "user authentication system" - 问题解决:`/sc:brainstorm "slow database queries"``
/sc:implement - 功能开发
目的: 通过智能专家路由进行全栈功能实现
语法: /sc:implement "feature description" [--type frontend|backend|fullstack] [--focus security|performance]
使用场景:
- 身份验证:
/sc:implement "JWT login system" - UI 组件:
/sc:implement "responsive dashboard" - APIs:
/sc:implement "REST user endpoints" - 数据库:
/sc:implement "user schema with relationships"
/sc:analyze - 代码评估
目的: 跨质量、安全性和性能的综合代码分析
语法: /sc:analyze [path] [--focus quality|security|performance|architecture]
使用场景:
- 项目健康:
/sc:analyze . - 安全审计:
/sc:analyze --focus security - 性能评审:
/sc:analyze --focus performance
/sc:troubleshoot - 问题诊断
目的: 系统化问题诊断与根本原因分析
语法: /sc:troubleshoot "问题描述" [--type build|runtime|performance]
使用场景:
- 运行时错误:
/sc:troubleshoot "登录时出现500错误" - 构建失败:
/sc:troubleshoot --type build - 性能问题:
/sc:troubleshoot "页面加载缓慢"
/sc:test - 质量保证
目的: 全面测试与覆盖率分析
语法: /sc:test [--type unit|integration|e2e] [--coverage] [--fix]
使用场景:
- 完整测试套件:
/sc:test --coverage - 单元测试:
/sc:test --type unit --watch - 端到端验证:
/sc:test --type e2e
/sc:improve - 代码增强
目的: 应用系统化的代码改进和优化
语法: /sc:improve [path] [--type performance|quality|security] [--preview]
使用场景:
- 常规改进:
/sc:improve src/ - 性能优化:
/sc:improve --type performance - 安全加固:
/sc:improve --type security
/sc:document - 文档生成
目的: 为代码和API生成全面的文档
语法: /sc:document [path] [--type api|user-guide|technical] [--format markdown|html]
使用场景:
- API文档:
/sc:document --type api - 用户指南:
/sc:document --type user-guide - 技术文档:
/sc:document --type technical
/sc:workflow - 实现规划
目的: 从需求生成结构化的实现计划
语法: /sc:workflow "功能描述" [--strategy agile|waterfall] [--format markdown]
使用场景:
- 功能规划:
/sc:workflow "用户身份验证" - 冲刺规划:
/sc:workflow --strategy agile - 架构规划:
/sc:workflow "微服务迁移"
常用工作流
经过验证的命令组合:
新项目设置
/sc:brainstorm "项目概念" # 定义需求
/sc:design "系统架构" # 创建技术设计
/sc:workflow "实现计划" # 制定开发路线图
功能开发
/sc:implement "功能名称" # 构建功能
/sc:test --coverage # 通过测试验证
/sc:document --type api # 生成文档
代码质量改进
/sc:analyze --focus quality # 评估当前状态
/sc:improve --preview # 预览改进
/sc:test --coverage # 验证变更
Bug调查
/sc:troubleshoot "问题描述" # 诊断问题
/sc:analyze --focus problem-area # 深度分析
/sc:improve --fix --safe-mode # 应用针对性修复
完整命令参考
开发命令
| 命令 | 目的 | 最适用于 |
|---|---|---|
| workflow | 实现规划 | 项目路线图,冲刺规划 |
| implement | 功能开发 | 全栈功能,API开发 |
| build | 项目编译 | CI/CD,生产构建 |
| design | 系统架构 | API规范,数据库模式 |
分析命令
| 命令 | 目的 | 最适用于 |
|---|---|---|
| analyze | 代码评估 | 质量审计,安全评审 |
| troubleshoot | 问题诊断 | Bug调查,性能问题 |
| explain | 代码解释 | 学习,代码评审 |
质量命令
| 命令 | 目的 | 最适用于 |
|---|---|---|
| improve | 代码增强 | 性能优化,重构 |
| cleanup | 技术债务 | 清理无用代码,组织整理 |
| test | 质量保证 | 测试自动化,覆盖率分析 |
| document | 文档生成 | API文档,用户指南 |
项目管理
| 命令 | 目的 | 最适用于 |
|---|---|---|
| estimate | 项目估算 | 时间线规划,资源分配 |
| task | 任务管理 | 复杂工作流,任务跟踪 |
| spawn | 元编排 | 大型项目,并行执行 |
实用工具命令
| 命令 | 目的 | 最适用于 |
|---|---|---|
| git | 版本控制 | 提交管理,分支策略 |
| index | 命令发现 | 探索功能,查找命令 |
会话命令
| 命令 | 目的 | 最适用于 |
|---|---|---|
| load | 上下文加载 | 会话初始化,项目启用 |
| save | 会话持久化 | 检查点,上下文保存 |
| reflect | 任务验证 | 进度评估,完成验证 |
| select-tool | 工具优化 | 性能优化,工具选择 |
命令索引
按功能分类:
- 规划: brainstorm, design, workflow, estimate
- 开发: implement, build, git
- 分析: analyze, troubleshoot, explain
- 质量: improve, cleanup, test, document
- 管理: task, spawn, load, save, reflect
- 工具: index, select-tool
按复杂度分类:
- 初学者: brainstorm, implement, analyze, test
- 中级: workflow, design, improve, document
- 高级: spawn, task, select-tool, reflect
故障排除
命令问题:
- 命令未找到: 验证安装:
python3 -m SuperClaude --version - 无响应: 重启 Claude Code 会话
- 处理延迟: 使用
--no-mcp测试不使用 MCP 服务器
快速修复:
- 重置会话:
/sc:load重新初始化 - 检查状态:
SuperClaude install --list-components - 获取帮助: 故障排除指南