mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-18 02:06:36 +00:00
* docs: fix mindbase syntax and document as optional MCP enhancement Fix incorrect method call syntax and clarify mindbase as optional enhancement that coexists with built-in ReflexionMemory. Changes: - Fix syntax: mindbase.search_conversations() → natural language instructions that allow Claude to autonomously select tools - Clarify mindbase requires airis-mcp-gateway "recommended" profile - Document ReflexionMemory as built-in fallback (always available) - Show coexistence model: both systems work together Architecture: - ReflexionMemory (built-in): Keyword-based search, local JSONL - Mindbase (optional MCP): Semantic search, PostgreSQL + pgvector - Claude autonomously selects best available tool when needed This approach allows users to enhance error learning with mindbase when installed, while maintaining full functionality with ReflexionMemory alone. Related: #452 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: add comprehensive ReflexionMemory user documentation Add user-facing documentation for the ReflexionMemory error learning system to address documentation gap identified during mindbase cleanup. New Documentation: - docs/user-guide/memory-system.md (283 lines) * Complete user guide for ReflexionMemory * How it works, storage format, usage examples * Performance benefits and troubleshooting * Manual inspection and management commands - docs/memory/reflexion.jsonl.example (15 entries) * 15 realistic example reflexion entries * Covers common scenarios: auth, DB, CORS, uploads, etc. * Reference for understanding the data format - docs/memory/README.md (277 lines) * Overview of memory directory structure * Explanation of all files (reflexion, metrics, patterns) * File management, backup, and git guidelines * Quick command reference Context: Previous mindbase cleanup removed references to non-existent external MCP server, but didn't add sufficient user-facing documentation for the actual ReflexionMemory implementation. Related: #452 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: translate Japanese text to English in documentation Address PR feedback to remove Japanese text from English documentation files. Changes: - docs/mcp/mcp-integration-policy.md: Translate headers and descriptions - docs/reference/pm-agent-autonomous-reflection.md: Translate error messages - docs/research/reflexion-integration-2025.md: Translate error messages - docs/memory/pm_context.md: Translate example keywords All Japanese text in English documentation files has been translated to English. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: Claude <noreply@anthropic.com>
7.9 KiB
7.9 KiB
Reflexion Framework Integration - PM Agent
Date: 2025-10-17 Purpose: Integrate Reflexion self-reflection mechanism into PM Agent Source: Reflexion: Language Agents with Verbal Reinforcement Learning (2023, arXiv)
概要
Reflexionは、LLMエージェントが自分の行動を振り返り、エラーを検出し、次の試行で改善するフレームワーク。
核心メカニズム
Traditional Agent:
Action → Observe → Repeat
問題: 同じ間違いを繰り返す
Reflexion Agent:
Action → Observe → Reflect → Learn → Improved Action
利点: 自己修正、継続的改善
PM Agent統合アーキテクチャ
1. Self-Evaluation (自己評価)
タイミング: 実装完了後、完了報告前
Purpose: 自分の実装を客観的に評価
Questions:
❓ "この実装、本当に正しい?"
❓ "テストは全て通ってる?"
❓ "思い込みで判断してない?"
❓ "ユーザーの要件を満たしてる?"
Process:
1. 実装内容を振り返る
2. テスト結果を確認
3. 要件との照合
4. 証拠の有無確認
Output:
- 完了判定 (✅ / ❌)
- 不足項目リスト
- 次のアクション提案
2. Self-Reflection (自己反省)
タイミング: エラー発生時、実装失敗時
Purpose: なぜ失敗したのかを理解する
Reflexion Example (Original Paper):
"Reflection: I searched the wrong title for the show,
which resulted in no results. I should have searched
the show's main character to find the correct information."
PM Agent Application:
"Reflection:
❌ What went wrong: JWT validation failed
🔍 Root cause: Missing environment variable SUPABASE_JWT_SECRET
💡 Why it happened: Didn't check .env.example before implementation
✅ Prevention: Always verify environment setup before starting
📝 Learning: Add env validation to startup checklist"
Storage:
→ docs/memory/reflexion.jsonl (ReflexionMemory - always available)
→ docs/mistakes/[feature]-YYYY-MM-DD.md
→ mindbase (if airis-mcp-gateway installed, automatic)
3. Memory Integration (記憶統合)
Purpose: 過去の失敗から学習し、同じ間違いを繰り返さない
Error Occurred:
1. Check Past Errors (Automatic Tool Selection):
→ Search conversation history for similar errors
→ Claude selects best available tool:
* mindbase_search (if airis-mcp-gateway installed)
- Semantic search across all conversations
- Cross-project pattern recognition
* ReflexionMemory (built-in, always available)
- Keyword search in reflexion.jsonl
- Fast project-scoped matching
2. IF similar error found:
✅ "⚠️ Same error occurred before"
✅ "Solution: [past_solution]"
✅ Apply known solution immediately
→ Skip lengthy investigation
3. ELSE (new error):
→ Proceed with root cause investigation
→ Document solution for future reference
実装パターン
Pattern 1: Pre-Implementation Reflection
Before Starting:
PM Agent Internal Dialogue:
"Am I clear on what needs to be done?"
→ IF No: Ask user for clarification
→ IF Yes: Proceed
"Do I have sufficient information?"
→ Check: Requirements, constraints, architecture
→ IF No: Research official docs, patterns
→ IF Yes: Proceed
"What could go wrong?"
→ Identify risks
→ Plan mitigation strategies
Pattern 2: Mid-Implementation Check
During Implementation:
Checkpoint Questions (every 30 min OR major milestone):
❓ "Am I still on track?"
❓ "Is this approach working?"
❓ "Any warnings or errors I'm ignoring?"
IF deviation detected:
→ STOP
→ Reflect: "Why am I deviating?"
→ Reassess: "Should I course-correct or continue?"
→ Decide: Continue OR restart with new approach
Pattern 3: Post-Implementation Reflection
After Implementation:
Completion Checklist:
✅ Tests all pass (actual results shown)
✅ Requirements all met (checklist verified)
✅ No warnings ignored (all investigated)
✅ Evidence documented (test outputs, code changes)
IF checklist incomplete:
→ ❌ NOT complete
→ Report actual status honestly
→ Continue work
IF checklist complete:
→ ✅ Feature complete
→ Document learnings
→ Update knowledge base
Hallucination Prevention Strategies
Strategy 1: Evidence Requirement
Principle: Never claim success without evidence
Claiming "Complete":
MUST provide:
1. Test Results (actual output)
2. Code Changes (file list, diff summary)
3. Validation Status (lint, typecheck, build)
IF evidence missing:
→ BLOCK completion claim
→ Force verification first
Strategy 2: Self-Check Questions
Principle: Question own assumptions systematically
Before Reporting:
Ask Self:
❓ "Did I actually RUN the tests?"
❓ "Are the test results REAL or assumed?"
❓ "Am I hiding any failures?"
❓ "Would I trust this implementation in production?"
IF any answer is negative:
→ STOP reporting success
→ Fix issues first
Strategy 3: Confidence Thresholds
Principle: Admit uncertainty when confidence is low
Confidence Assessment:
High (90-100%):
→ Proceed confidently
→ Official docs + existing patterns support approach
Medium (70-89%):
→ Present options
→ Explain trade-offs
→ Recommend best choice
Low (<70%):
→ STOP
→ Ask user for guidance
→ Never pretend to know
Token Budget Integration
Challenge: Reflection costs tokens
Solution: Budget-aware reflection based on task complexity
Simple Task (typo fix):
Reflection Budget: 200 tokens
Questions: "File edited? Tests pass?"
Medium Task (bug fix):
Reflection Budget: 1,000 tokens
Questions: "Root cause identified? Tests added? Regression prevented?"
Complex Task (feature):
Reflection Budget: 2,500 tokens
Questions: "All requirements met? Tests comprehensive? Integration verified? Documentation updated?"
Anti-Pattern:
❌ Unlimited reflection → Token explosion
✅ Budgeted reflection → Controlled cost
Success Metrics
Quantitative
Hallucination Detection Rate:
Target: >90% (Reflexion paper: 94%)
Measure: % of false claims caught by self-check
Error Recurrence Rate:
Target: <10% (same error repeated)
Measure: % of errors that occur twice
Confidence Accuracy:
Target: >85% (confidence matches reality)
Measure: High confidence → success rate
Qualitative
Culture Change:
✅ "わからないことをわからないと言う"
✅ "嘘をつかない、証拠を示す"
✅ "失敗を認める、次に改善する"
Behavioral Indicators:
✅ User questions reduce (clear communication)
✅ Rework reduces (first attempt accuracy increases)
✅ Trust increases (honest reporting)
Implementation Checklist
- Self-Check質問システム (完了前検証)
- Evidence Requirement (証拠要求)
- Confidence Scoring (確信度評価)
- Reflexion Pattern統合 (自己反省ループ)
- Token-Budget-Aware Reflection (予算制約型振り返り)
- 実装例とアンチパターン文書化
- workflow_metrics.jsonl統合
- テストと検証
References
-
Reflexion: Language Agents with Verbal Reinforcement Learning
- Authors: Noah Shinn et al.
- Year: 2023
- Key Insight: Self-reflection enables 94% error detection rate
-
Self-Evaluation in AI Agents
- Source: Galileo AI (2024)
- Key Insight: Confidence scoring reduces hallucinations
-
Token-Budget-Aware LLM Reasoning
- Source: arXiv 2412.18547 (2024)
- Key Insight: Budget constraints enable efficient reflection
End of Report