SuperClaude/docs/memory/WORKFLOW_METRICS_SCHEMA.md
Cedric Hurst bea4bfe289
docs: Replace Mindbase References with ReflexionMemory (#464)
* docs: fix mindbase syntax and document as optional MCP enhancement

Fix incorrect method call syntax and clarify mindbase as optional
enhancement that coexists with built-in ReflexionMemory.

Changes:
- Fix syntax: mindbase.search_conversations() → natural language
  instructions that allow Claude to autonomously select tools
- Clarify mindbase requires airis-mcp-gateway "recommended" profile
- Document ReflexionMemory as built-in fallback (always available)
- Show coexistence model: both systems work together

Architecture:
- ReflexionMemory (built-in): Keyword-based search, local JSONL
- Mindbase (optional MCP): Semantic search, PostgreSQL + pgvector
- Claude autonomously selects best available tool when needed

This approach allows users to enhance error learning with mindbase
when installed, while maintaining full functionality with
ReflexionMemory alone.

Related: #452

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* docs: add comprehensive ReflexionMemory user documentation

Add user-facing documentation for the ReflexionMemory error learning
system to address documentation gap identified during mindbase cleanup.

New Documentation:
- docs/user-guide/memory-system.md (283 lines)
  * Complete user guide for ReflexionMemory
  * How it works, storage format, usage examples
  * Performance benefits and troubleshooting
  * Manual inspection and management commands

- docs/memory/reflexion.jsonl.example (15 entries)
  * 15 realistic example reflexion entries
  * Covers common scenarios: auth, DB, CORS, uploads, etc.
  * Reference for understanding the data format

- docs/memory/README.md (277 lines)
  * Overview of memory directory structure
  * Explanation of all files (reflexion, metrics, patterns)
  * File management, backup, and git guidelines
  * Quick command reference

Context:
Previous mindbase cleanup removed references to non-existent external
MCP server, but didn't add sufficient user-facing documentation for
the actual ReflexionMemory implementation.

Related: #452

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* docs: translate Japanese text to English in documentation

Address PR feedback to remove Japanese text from English documentation files.

Changes:
- docs/mcp/mcp-integration-policy.md: Translate headers and descriptions
- docs/reference/pm-agent-autonomous-reflection.md: Translate error messages
- docs/research/reflexion-integration-2025.md: Translate error messages
- docs/memory/pm_context.md: Translate example keywords

All Japanese text in English documentation files has been translated to English.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-31 08:44:35 +05:30

10 KiB

Workflow Metrics Schema

Purpose: Token efficiency tracking for continuous optimization and A/B testing

File: docs/memory/workflow_metrics.jsonl (append-only log)

Data Structure (JSONL Format)

Each line is a complete JSON object representing one workflow execution.

{
  "timestamp": "2025-10-17T01:54:21+09:00",
  "session_id": "abc123def456",
  "task_type": "typo_fix",
  "complexity": "light",
  "workflow_id": "progressive_v3_layer2",
  "layers_used": [0, 1, 2],
  "tokens_used": 650,
  "time_ms": 1800,
  "files_read": 1,
  "mindbase_used": false,
  "sub_agents": [],
  "success": true,
  "user_feedback": "satisfied",
  "notes": "Optional implementation notes"
}

Field Definitions

Required Fields

Field Type Description Example
timestamp ISO 8601 Execution timestamp in JST "2025-10-17T01:54:21+09:00"
session_id string Unique session identifier "abc123def456"
task_type string Task classification "typo_fix", "bug_fix", "feature_impl"
complexity string Intent classification level "ultra-light", "light", "medium", "heavy", "ultra-heavy"
workflow_id string Workflow variant identifier "progressive_v3_layer2"
layers_used array Progressive loading layers executed [0, 1, 2]
tokens_used integer Total tokens consumed 650
time_ms integer Execution time in milliseconds 1800
success boolean Task completion status true, false

Optional Fields

Field Type Description Example
files_read integer Number of files read 1
error_search_tool string Tool used for error search "mindbase_search", "ReflexionMemory", "none"
sub_agents array Delegated sub-agents ["backend-architect", "quality-engineer"]
user_feedback string Inferred user satisfaction "satisfied", "neutral", "unsatisfied"
notes string Implementation notes "Used cached solution"
confidence_score float Pre-implementation confidence 0.85
hallucination_detected boolean Self-check red flags found false
error_recurrence boolean Same error encountered before false

Task Type Taxonomy

Ultra-Light Tasks

  • progress_query: "進捗教えて"
  • status_check: "現状確認"
  • next_action_query: "次のタスクは?"

Light Tasks

  • typo_fix: README誤字修正
  • comment_addition: コメント追加
  • variable_rename: 変数名変更
  • documentation_update: ドキュメント更新

Medium Tasks

  • bug_fix: バグ修正
  • small_feature: 小機能追加
  • refactoring: リファクタリング
  • test_addition: テスト追加

Heavy Tasks

  • feature_impl: 新機能実装
  • architecture_change: アーキテクチャ変更
  • security_audit: セキュリティ監査
  • integration: 外部システム統合

Ultra-Heavy Tasks

  • system_redesign: システム全面再設計
  • framework_migration: フレームワーク移行
  • comprehensive_research: 包括的調査

Workflow Variant Identifiers

Progressive Loading Variants

  • progressive_v3_layer1: Ultra-light (memory files only)
  • progressive_v3_layer2: Light (target file only)
  • progressive_v3_layer3: Medium (related files 3-5)
  • progressive_v3_layer4: Heavy (subsystem)
  • progressive_v3_layer5: Ultra-heavy (full + external research)

Experimental Variants (A/B Testing)

  • experimental_eager_layer3: Always load Layer 3 for medium tasks
  • experimental_lazy_layer2: Minimal Layer 2 loading
  • experimental_parallel_layer3: Parallel file loading in Layer 3

Complexity Classification Rules

ultra_light:
  keywords: ["進捗", "状況", "進み", "where", "status", "progress"]
  token_budget: "100-500"
  layers: [0, 1]

light:
  keywords: ["誤字", "typo", "fix typo", "correct", "comment"]
  token_budget: "500-2K"
  layers: [0, 1, 2]

medium:
  keywords: ["バグ", "bug", "fix", "修正", "error", "issue"]
  token_budget: "2-5K"
  layers: [0, 1, 2, 3]

heavy:
  keywords: ["新機能", "new feature", "implement", "実装"]
  token_budget: "5-20K"
  layers: [0, 1, 2, 3, 4]

ultra_heavy:
  keywords: ["再設計", "redesign", "overhaul", "migration"]
  token_budget: "20K+"
  layers: [0, 1, 2, 3, 4, 5]

Recording Points

Session Start (Layer 0)

session_id = generate_session_id()
workflow_metrics = {
    "timestamp": get_current_time(),
    "session_id": session_id,
    "workflow_id": "progressive_v3_layer0"
}
# Bootstrap: 150 tokens

After Intent Classification (Layer 1)

workflow_metrics.update({
    "task_type": classify_task_type(user_request),
    "complexity": classify_complexity(user_request),
    "estimated_token_budget": get_budget(complexity)
})

After Progressive Loading

workflow_metrics.update({
    "layers_used": [0, 1, 2],  # Actual layers executed
    "tokens_used": calculate_tokens(),
    "files_read": len(files_loaded)
})

After Task Completion

workflow_metrics.update({
    "success": task_completed_successfully,
    "time_ms": execution_time_ms,
    "user_feedback": infer_user_satisfaction()
})

Session End

# Append to workflow_metrics.jsonl
with open("docs/memory/workflow_metrics.jsonl", "a") as f:
    f.write(json.dumps(workflow_metrics) + "\n")

Analysis Scripts

Weekly Analysis

# Group by task type and calculate averages
python scripts/analyze_workflow_metrics.py --period week

# Output:
# Task Type: typo_fix
#   Count: 12
#   Avg Tokens: 680
#   Avg Time: 1,850ms
#   Success Rate: 100%

A/B Testing Analysis

# Compare workflow variants
python scripts/ab_test_workflows.py \
  --variant-a progressive_v3_layer2 \
  --variant-b experimental_eager_layer3 \
  --metric tokens_used

# Output:
# Variant A (progressive_v3_layer2):
#   Avg Tokens: 1,250
#   Success Rate: 95%
#
# Variant B (experimental_eager_layer3):
#   Avg Tokens: 2,100
#   Success Rate: 98%
#
# Statistical Significance: p = 0.03 (significant)
# Recommendation: Keep Variant A (better efficiency)

Usage (Continuous Optimization)

Weekly Review Process

every_monday_morning:
  1. Run analysis: python scripts/analyze_workflow_metrics.py --period week
  2. Identify patterns:
     - Best-performing workflows per task type
     - Inefficient patterns (high tokens, low success)
     - User satisfaction trends
  3. Update recommendations:
     - Promote efficient workflows to standard
     - Deprecate inefficient workflows
     - Design new experimental variants

A/B Testing Framework

allocation_strategy:
  current_best: 80%  # Use best-known workflow
  experimental: 20%  # Test new variant

evaluation_criteria:
  minimum_trials: 20  # Per variant
  confidence_level: 0.95  # p < 0.05
  metrics:
    - tokens_used (primary)
    - success_rate (gate: must be ≥95%)
    - user_feedback (qualitative)

promotion_rules:
  if experimental_better:
    - Statistical significance confirmed
    - Success rate ≥ current_best
    - User feedback ≥ neutral
    → Promote to standard (80% allocation)

  if experimental_worse:
    → Deprecate variant
    → Document learning in docs/patterns/

Auto-Optimization Cycle

monthly_cleanup:
  1. Identify stale workflows:
     - No usage in last 90 days
     - Success rate <80%
     - User feedback consistently negative

  2. Archive deprecated workflows:
     - Move to docs/patterns/deprecated/
     - Document why deprecated

  3. Promote new standards:
     - Experimental → Standard (if proven better)
     - Update pm.md with new best practices

  4. Generate monthly report:
     - Token efficiency trends
     - Success rate improvements
     - User satisfaction evolution

Visualization

Token Usage Over Time

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_json("docs/memory/workflow_metrics.jsonl", lines=True)
df['date'] = pd.to_datetime(df['timestamp']).dt.date

daily_avg = df.groupby('date')['tokens_used'].mean()
plt.plot(daily_avg)
plt.title("Average Token Usage Over Time")
plt.ylabel("Tokens")
plt.xlabel("Date")
plt.show()

Task Type Distribution

task_counts = df['task_type'].value_counts()
plt.pie(task_counts, labels=task_counts.index, autopct='%1.1f%%')
plt.title("Task Type Distribution")
plt.show()

Workflow Efficiency Comparison

workflow_efficiency = df.groupby('workflow_id').agg({
    'tokens_used': 'mean',
    'success': 'mean',
    'time_ms': 'mean'
})
print(workflow_efficiency.sort_values('tokens_used'))

Expected Patterns

Healthy Metrics (After 1 Month)

token_efficiency:
  ultra_light: 750-1,050 tokens (63% reduction)
  light: 1,250 tokens (46% reduction)
  medium: 3,850 tokens (47% reduction)
  heavy: 10,350 tokens (40% reduction)

success_rates:
  all_tasks: ≥95%
  ultra_light: 100% (simple tasks)
  light: 98%
  medium: 95%
  heavy: 92%

user_satisfaction:
  satisfied: ≥70%
  neutral: ≤25%
  unsatisfied: ≤5%

Red Flags (Require Investigation)

warning_signs:
  - success_rate < 85% for any task type
  - tokens_used > estimated_budget by >30%
  - time_ms > 10 seconds for light tasks
  - user_feedback "unsatisfied" > 10%
  - error_recurrence > 15%

Integration with PM Agent

Automatic Recording

PM Agent automatically records metrics at each execution point:

  • Session start (Layer 0)
  • Intent classification (Layer 1)
  • Progressive loading (Layers 2-5)
  • Task completion
  • Session end

No Manual Intervention

  • All recording is automatic
  • No user action required
  • Transparent operation
  • Privacy-preserving (local files only)

Privacy and Security

Data Retention

  • Local storage only (docs/memory/)
  • No external transmission
  • Git-manageable (optional)
  • User controls retention period

Sensitive Data Handling

  • No code snippets logged
  • No user input content
  • Only metadata (tokens, timing, success)
  • Task types are generic classifications

Maintenance

File Rotation

# Archive old metrics (monthly)
mv docs/memory/workflow_metrics.jsonl \
   docs/memory/archive/workflow_metrics_2025-10.jsonl

# Start fresh
touch docs/memory/workflow_metrics.jsonl

Cleanup

# Remove metrics older than 6 months
find docs/memory/archive/ -name "workflow_metrics_*.jsonl" \
  -mtime +180 -delete

References

  • Specification: plugins/superclaude/commands/pm.md (Line 291-355)
  • Research: docs/research/llm-agent-token-efficiency-2025.md
  • Tests: tests/pm_agent/test_token_budget.py