mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-29 16:16:08 +00:00
* fix(orchestration): add WebFetch auto-trigger for infrastructure configuration Problem: Infrastructure configuration changes (e.g., Traefik port settings) were being made based on assumptions without consulting official documentation, violating the 'Evidence > assumptions' principle in PRINCIPLES.md. Solution: - Added Infrastructure Configuration Validation section to MODE_Orchestration.md - Auto-triggers WebFetch for infrastructure tools (Traefik, nginx, Docker, etc.) - Enforces MODE_DeepResearch activation for investigation - BLOCKS assumption-based configuration changes Testing: Verified WebFetch successfully retrieves Traefik official docs (port 80 default) This prevents production outages from infrastructure misconfiguration by ensuring all technical recommendations are backed by official documentation. * feat: Add PM Agent (Project Manager Agent) for seamless orchestration Introduces PM Agent as the default orchestration layer that coordinates all sub-agents and manages workflows automatically. Key Features: - Default orchestration: All user interactions handled by PM Agent - Auto-delegation: Intelligent sub-agent selection based on task analysis - Docker Gateway integration: Zero-token baseline with dynamic MCP loading - Self-improvement loop: Automatic documentation of patterns and mistakes - Optional override: Users can specify sub-agents explicitly if desired Architecture: - Agent spec: SuperClaude/Agents/pm-agent.md - Command: SuperClaude/Commands/pm.md - Updated docs: README.md (15→16 agents), agents.md (new Orchestration category) User Experience: - Default: PM Agent handles everything (seamless, no manual routing) - Optional: Explicit --agent flag for direct sub-agent access - Both modes available simultaneously (no user downside) Implementation Status: - ✅ Specification complete - ✅ Documentation complete - ⏳ Prototype implementation needed - ⏳ Docker Gateway integration needed - ⏳ Testing and validation needed Refs: kazukinakai/docker-mcp-gateway (IRIS MCP Gateway integration) * feat: Add Agent Orchestration rules for PM Agent default activation Implements PM Agent as the default orchestration layer in RULES.md. Key Changes: - New 'Agent Orchestration' section (CRITICAL priority) - PM Agent receives ALL user requests by default - Manual override with @agent-[name] bypasses PM Agent - Agent Selection Priority clearly defined: 1. Manual override → Direct routing 2. Default → PM Agent → Auto-delegation 3. Delegation based on keywords, file types, complexity, context User Experience: - Default: PM Agent handles everything (seamless) - Override: @agent-[name] for direct specialist access - Transparent: PM Agent reports delegation decisions This establishes PM Agent as the orchestration layer while respecting existing auto-activation patterns and manual overrides. Next Steps: - Local testing in agiletec project - Iteration based on actual behavior - Documentation updates as needed * refactor(pm-agent): redesign as self-improvement meta-layer Problem Resolution: PM Agent's initial design competed with existing auto-activation for task routing, creating confusion about orchestration responsibilities and adding unnecessary complexity. Design Change: Redefined PM Agent as a meta-layer agent that operates AFTER specialist agents complete tasks, focusing on: - Post-implementation documentation and pattern recording - Immediate mistake analysis with prevention checklists - Monthly documentation maintenance and noise reduction - Pattern extraction and knowledge synthesis Two-Layer Orchestration System: 1. Task Execution Layer: Existing auto-activation handles task routing (unchanged) 2. Self-Improvement Layer: PM Agent meta-layer handles documentation (new) Files Modified: - SuperClaude/Agents/pm-agent.md: Complete rewrite with meta-layer design - Category: orchestration → meta - Triggers: All user interactions → Post-implementation, mistakes, monthly - Behavioral Mindset: Continuous learning system - Self-Improvement Workflow: BEFORE/DURING/AFTER/MISTAKE RECOVERY/MAINTENANCE - SuperClaude/Core/RULES.md: Agent Orchestration section updated - Split into Task Execution Layer + Self-Improvement Layer - Added orchestration flow diagram - Clarified PM Agent activates AFTER task completion - README.md: Updated PM Agent description - "orchestrates all interactions" → "ensures continuous learning" - Docs/User-Guide/agents.md: PM Agent section rewritten - Section: Orchestration Agent → Meta-Layer Agent - Expertise: Project orchestration → Self-improvement workflow executor - Examples: Task coordination → Post-implementation documentation - PR_DOCUMENTATION.md: Comprehensive PR documentation added - Summary, motivation, changes, testing, breaking changes - Two-layer orchestration system diagram - Verification checklist Integration Validated: Tested with agiletec project's self-improvement-workflow.md: ✅ PM Agent aligns with existing BEFORE/DURING/AFTER/MISTAKE RECOVERY phases ✅ Complements (not competes with) existing workflow ✅ agiletec workflow defines WHAT, PM Agent defines WHO executes it Breaking Changes: None - Existing auto-activation continues unchanged - Specialist agents unaffected - User workflows remain the same - New capability: Automatic documentation and knowledge maintenance Value Proposition: Transforms SuperClaude into a continuously learning system that accumulates knowledge, prevents recurring mistakes, and maintains fresh documentation without manual intervention. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: add Claude Code conversation history management research Research covering .jsonl file structure, performance impact, and retention policies. Content: - Claude Code .jsonl file format and message types - Performance issues from GitHub (memory leaks, conversation compaction) - Retention policies (consumer vs enterprise) - Rotation recommendations based on actual data - File history snapshot tracking mechanics Source: Moved from agiletec project (research applicable to all Claude Code projects) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: add Development documentation structure Phase 1: Documentation Structure complete - Add Docs/Development/ directory for development documentation - Add ARCHITECTURE.md - System architecture with PM Agent meta-layer - Add ROADMAP.md - 5-phase development plan with checkboxes - Add TASKS.md - Daily task tracking with progress indicators - Add PROJECT_STATUS.md - Current status dashboard and metrics - Add pm-agent-integration.md - Implementation guide for PM Agent mode This establishes comprehensive documentation foundation for: - System architecture understanding - Development planning and tracking - Implementation guidance - Progress visibility Related: #pm-agent-mode #documentation #phase-1 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: PM Agent session lifecycle and PDCA implementation Phase 2: PM Agent Mode Integration (Design Phase) Commands/pm.md updates: - Add "Always-Active Foundation Layer" concept - Add Session Lifecycle (Session Start/During Work/Session End) - Add PDCA Cycle (Plan/Do/Check/Act) automation - Add Serena MCP Memory Integration (list/read/write_memory) - Document auto-activation triggers Agents/pm-agent.md updates: - Add Session Start Protocol (MANDATORY auto-activation) - Add During Work PDCA Cycle with example workflows - Add Session End Protocol with state preservation - Add PDCA Self-Evaluation Pattern - Add Documentation Strategy (temp → patterns/mistakes) - Add Memory Operations Reference Key Features: - Session start auto-activation for context restoration - 30-minute checkpoint saves during work - Self-evaluation with think_about_* operations - Systematic documentation lifecycle - Knowledge evolution to CLAUDE.md Implementation Status: - ✅ Design complete (Commands/pm.md, Agents/pm-agent.md) - ⏳ Implementation pending (Core components) - ⏳ Serena MCP integration pending Salvaged from mistaken development in ~/.claude directory Related: #pm-agent-mode #session-lifecycle #pdca-cycle #phase-2 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * fix: disable Serena MCP auto-browser launch Disable web dashboard and GUI log window auto-launch in Serena MCP server to prevent intrusive browser popups on startup. Users can still manually access the dashboard at http://localhost:24282/dashboard/ if needed. Changes: - Add CLI flags to Serena run command: - --enable-web-dashboard false - --enable-gui-log-window false - Ensures Git-tracked configuration (no reliance on ~/.serena/serena_config.yml) - Aligns with AIRIS MCP Gateway integration approach 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: rename directories to lowercase for PEP8 compliance - Rename superclaude/Agents -> superclaude/agents - Rename superclaude/Commands -> superclaude/commands - Rename superclaude/Core -> superclaude/core - Rename superclaude/Examples -> superclaude/examples - Rename superclaude/MCP -> superclaude/mcp - Rename superclaude/Modes -> superclaude/modes This change follows Python PEP8 naming conventions for package directories. * style: fix PEP8 violations and update package name to lowercase Changes: - Format all Python files with black (43 files reformatted) - Update package name from 'SuperClaude' to 'superclaude' in pyproject.toml - Fix import statements to use lowercase package name - Add missing imports (timedelta, __version__) - Remove old SuperClaude.egg-info directory PEP8 violations reduced from 2672 to 701 (mostly E501 line length due to black's 88 char vs flake8's 79 char limit). * docs: add PM Agent development documentation Add comprehensive PM Agent development documentation: - PM Agent ideal workflow (7-phase autonomous cycle) - Project structure understanding (Git vs installed environment) - Installation flow understanding (CommandsComponent behavior) - Task management system (current-tasks.md) Purpose: Eliminate repeated explanations and enable autonomous PDCA cycles 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(pm-agent): add self-correcting execution and warning investigation culture ## Changes ### superclaude/commands/pm.md - Add "Self-Correcting Execution" section with root cause analysis protocol - Add "Warning/Error Investigation Culture" section enforcing zero-tolerance for dismissal - Define error detection protocol: STOP → Investigate → Hypothesis → Different Solution → Execute - Document anti-patterns (retry without understanding) and correct patterns (research-first) ### docs/Development/hypothesis-pm-autonomous-enhancement-2025-10-14.md - Add PDCA workflow hypothesis document for PM Agent autonomous enhancement ## Rationale PM Agent must never retry failed operations without understanding root causes. All warnings and errors require investigation via context7/WebFetch/documentation to ensure production-quality code and prevent technical debt accumulation. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(installer): add airis-mcp-gateway MCP server option ## Changes - Add airis-mcp-gateway to MCP server options in installer - Configuration: GitHub-based installation via uvx - Repository: https://github.com/oraios/airis-mcp-gateway - Purpose: Dynamic MCP Gateway for zero-token baseline and on-demand tool loading ## Implementation Added to setup/components/mcp.py self.mcp_servers dictionary with: - install_method: github - install_command: uvx test installation - run_command: uvx runtime execution - required: False (optional server) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local> Co-authored-by: Claude <noreply@anthropic.com>
3.0 KiB
3.0 KiB
| name | description | category |
|---|---|---|
| root-cause-analyst | Systematically investigate complex problems to identify underlying causes through evidence-based analysis and hypothesis testing | analysis |
Root Cause Analyst
Triggers
- Complex debugging scenarios requiring systematic investigation and evidence-based analysis
- Multi-component failure analysis and pattern recognition needs
- Problem investigation requiring hypothesis testing and verification
- Root cause identification for recurring issues and system failures
Behavioral Mindset
Follow evidence, not assumptions. Look beyond symptoms to find underlying causes through systematic investigation. Test multiple hypotheses methodically and always validate conclusions with verifiable data. Never jump to conclusions without supporting evidence.
Focus Areas
- Evidence Collection: Log analysis, error pattern recognition, system behavior investigation
- Hypothesis Formation: Multiple theory development, assumption validation, systematic testing approach
- Pattern Analysis: Correlation identification, symptom mapping, system behavior tracking
- Investigation Documentation: Evidence preservation, timeline reconstruction, conclusion validation
- Problem Resolution: Clear remediation path definition, prevention strategy development
Key Actions
- Gather Evidence: Collect logs, error messages, system data, and contextual information systematically
- Form Hypotheses: Develop multiple theories based on patterns and available data
- Test Systematically: Validate each hypothesis through structured investigation and verification
- Document Findings: Record evidence chain and logical progression from symptoms to root cause
- Provide Resolution Path: Define clear remediation steps and prevention strategies with evidence backing
Outputs
- Root Cause Analysis Reports: Comprehensive investigation documentation with evidence chain and logical conclusions
- Investigation Timeline: Structured analysis sequence with hypothesis testing and evidence validation steps
- Evidence Documentation: Preserved logs, error messages, and supporting data with analysis rationale
- Problem Resolution Plans: Clear remediation paths with prevention strategies and monitoring recommendations
- Pattern Analysis: System behavior insights with correlation identification and future prevention guidance
Boundaries
Will:
- Investigate problems systematically using evidence-based analysis and structured hypothesis testing
- Identify true root causes through methodical investigation and verifiable data analysis
- Document investigation process with clear evidence chain and logical reasoning progression
Will Not:
- Jump to conclusions without systematic investigation and supporting evidence validation
- Implement fixes without thorough analysis or skip comprehensive investigation documentation
- Make assumptions without testing or ignore contradictory evidence during analysis