mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-29 16:16:08 +00:00
* fix(orchestration): add WebFetch auto-trigger for infrastructure configuration Problem: Infrastructure configuration changes (e.g., Traefik port settings) were being made based on assumptions without consulting official documentation, violating the 'Evidence > assumptions' principle in PRINCIPLES.md. Solution: - Added Infrastructure Configuration Validation section to MODE_Orchestration.md - Auto-triggers WebFetch for infrastructure tools (Traefik, nginx, Docker, etc.) - Enforces MODE_DeepResearch activation for investigation - BLOCKS assumption-based configuration changes Testing: Verified WebFetch successfully retrieves Traefik official docs (port 80 default) This prevents production outages from infrastructure misconfiguration by ensuring all technical recommendations are backed by official documentation. * feat: Add PM Agent (Project Manager Agent) for seamless orchestration Introduces PM Agent as the default orchestration layer that coordinates all sub-agents and manages workflows automatically. Key Features: - Default orchestration: All user interactions handled by PM Agent - Auto-delegation: Intelligent sub-agent selection based on task analysis - Docker Gateway integration: Zero-token baseline with dynamic MCP loading - Self-improvement loop: Automatic documentation of patterns and mistakes - Optional override: Users can specify sub-agents explicitly if desired Architecture: - Agent spec: SuperClaude/Agents/pm-agent.md - Command: SuperClaude/Commands/pm.md - Updated docs: README.md (15→16 agents), agents.md (new Orchestration category) User Experience: - Default: PM Agent handles everything (seamless, no manual routing) - Optional: Explicit --agent flag for direct sub-agent access - Both modes available simultaneously (no user downside) Implementation Status: - ✅ Specification complete - ✅ Documentation complete - ⏳ Prototype implementation needed - ⏳ Docker Gateway integration needed - ⏳ Testing and validation needed Refs: kazukinakai/docker-mcp-gateway (IRIS MCP Gateway integration) * feat: Add Agent Orchestration rules for PM Agent default activation Implements PM Agent as the default orchestration layer in RULES.md. Key Changes: - New 'Agent Orchestration' section (CRITICAL priority) - PM Agent receives ALL user requests by default - Manual override with @agent-[name] bypasses PM Agent - Agent Selection Priority clearly defined: 1. Manual override → Direct routing 2. Default → PM Agent → Auto-delegation 3. Delegation based on keywords, file types, complexity, context User Experience: - Default: PM Agent handles everything (seamless) - Override: @agent-[name] for direct specialist access - Transparent: PM Agent reports delegation decisions This establishes PM Agent as the orchestration layer while respecting existing auto-activation patterns and manual overrides. Next Steps: - Local testing in agiletec project - Iteration based on actual behavior - Documentation updates as needed * refactor(pm-agent): redesign as self-improvement meta-layer Problem Resolution: PM Agent's initial design competed with existing auto-activation for task routing, creating confusion about orchestration responsibilities and adding unnecessary complexity. Design Change: Redefined PM Agent as a meta-layer agent that operates AFTER specialist agents complete tasks, focusing on: - Post-implementation documentation and pattern recording - Immediate mistake analysis with prevention checklists - Monthly documentation maintenance and noise reduction - Pattern extraction and knowledge synthesis Two-Layer Orchestration System: 1. Task Execution Layer: Existing auto-activation handles task routing (unchanged) 2. Self-Improvement Layer: PM Agent meta-layer handles documentation (new) Files Modified: - SuperClaude/Agents/pm-agent.md: Complete rewrite with meta-layer design - Category: orchestration → meta - Triggers: All user interactions → Post-implementation, mistakes, monthly - Behavioral Mindset: Continuous learning system - Self-Improvement Workflow: BEFORE/DURING/AFTER/MISTAKE RECOVERY/MAINTENANCE - SuperClaude/Core/RULES.md: Agent Orchestration section updated - Split into Task Execution Layer + Self-Improvement Layer - Added orchestration flow diagram - Clarified PM Agent activates AFTER task completion - README.md: Updated PM Agent description - "orchestrates all interactions" → "ensures continuous learning" - Docs/User-Guide/agents.md: PM Agent section rewritten - Section: Orchestration Agent → Meta-Layer Agent - Expertise: Project orchestration → Self-improvement workflow executor - Examples: Task coordination → Post-implementation documentation - PR_DOCUMENTATION.md: Comprehensive PR documentation added - Summary, motivation, changes, testing, breaking changes - Two-layer orchestration system diagram - Verification checklist Integration Validated: Tested with agiletec project's self-improvement-workflow.md: ✅ PM Agent aligns with existing BEFORE/DURING/AFTER/MISTAKE RECOVERY phases ✅ Complements (not competes with) existing workflow ✅ agiletec workflow defines WHAT, PM Agent defines WHO executes it Breaking Changes: None - Existing auto-activation continues unchanged - Specialist agents unaffected - User workflows remain the same - New capability: Automatic documentation and knowledge maintenance Value Proposition: Transforms SuperClaude into a continuously learning system that accumulates knowledge, prevents recurring mistakes, and maintains fresh documentation without manual intervention. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: add Claude Code conversation history management research Research covering .jsonl file structure, performance impact, and retention policies. Content: - Claude Code .jsonl file format and message types - Performance issues from GitHub (memory leaks, conversation compaction) - Retention policies (consumer vs enterprise) - Rotation recommendations based on actual data - File history snapshot tracking mechanics Source: Moved from agiletec project (research applicable to all Claude Code projects) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: add Development documentation structure Phase 1: Documentation Structure complete - Add Docs/Development/ directory for development documentation - Add ARCHITECTURE.md - System architecture with PM Agent meta-layer - Add ROADMAP.md - 5-phase development plan with checkboxes - Add TASKS.md - Daily task tracking with progress indicators - Add PROJECT_STATUS.md - Current status dashboard and metrics - Add pm-agent-integration.md - Implementation guide for PM Agent mode This establishes comprehensive documentation foundation for: - System architecture understanding - Development planning and tracking - Implementation guidance - Progress visibility Related: #pm-agent-mode #documentation #phase-1 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: PM Agent session lifecycle and PDCA implementation Phase 2: PM Agent Mode Integration (Design Phase) Commands/pm.md updates: - Add "Always-Active Foundation Layer" concept - Add Session Lifecycle (Session Start/During Work/Session End) - Add PDCA Cycle (Plan/Do/Check/Act) automation - Add Serena MCP Memory Integration (list/read/write_memory) - Document auto-activation triggers Agents/pm-agent.md updates: - Add Session Start Protocol (MANDATORY auto-activation) - Add During Work PDCA Cycle with example workflows - Add Session End Protocol with state preservation - Add PDCA Self-Evaluation Pattern - Add Documentation Strategy (temp → patterns/mistakes) - Add Memory Operations Reference Key Features: - Session start auto-activation for context restoration - 30-minute checkpoint saves during work - Self-evaluation with think_about_* operations - Systematic documentation lifecycle - Knowledge evolution to CLAUDE.md Implementation Status: - ✅ Design complete (Commands/pm.md, Agents/pm-agent.md) - ⏳ Implementation pending (Core components) - ⏳ Serena MCP integration pending Salvaged from mistaken development in ~/.claude directory Related: #pm-agent-mode #session-lifecycle #pdca-cycle #phase-2 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * fix: disable Serena MCP auto-browser launch Disable web dashboard and GUI log window auto-launch in Serena MCP server to prevent intrusive browser popups on startup. Users can still manually access the dashboard at http://localhost:24282/dashboard/ if needed. Changes: - Add CLI flags to Serena run command: - --enable-web-dashboard false - --enable-gui-log-window false - Ensures Git-tracked configuration (no reliance on ~/.serena/serena_config.yml) - Aligns with AIRIS MCP Gateway integration approach 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: rename directories to lowercase for PEP8 compliance - Rename superclaude/Agents -> superclaude/agents - Rename superclaude/Commands -> superclaude/commands - Rename superclaude/Core -> superclaude/core - Rename superclaude/Examples -> superclaude/examples - Rename superclaude/MCP -> superclaude/mcp - Rename superclaude/Modes -> superclaude/modes This change follows Python PEP8 naming conventions for package directories. * style: fix PEP8 violations and update package name to lowercase Changes: - Format all Python files with black (43 files reformatted) - Update package name from 'SuperClaude' to 'superclaude' in pyproject.toml - Fix import statements to use lowercase package name - Add missing imports (timedelta, __version__) - Remove old SuperClaude.egg-info directory PEP8 violations reduced from 2672 to 701 (mostly E501 line length due to black's 88 char vs flake8's 79 char limit). * docs: add PM Agent development documentation Add comprehensive PM Agent development documentation: - PM Agent ideal workflow (7-phase autonomous cycle) - Project structure understanding (Git vs installed environment) - Installation flow understanding (CommandsComponent behavior) - Task management system (current-tasks.md) Purpose: Eliminate repeated explanations and enable autonomous PDCA cycles 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(pm-agent): add self-correcting execution and warning investigation culture ## Changes ### superclaude/commands/pm.md - Add "Self-Correcting Execution" section with root cause analysis protocol - Add "Warning/Error Investigation Culture" section enforcing zero-tolerance for dismissal - Define error detection protocol: STOP → Investigate → Hypothesis → Different Solution → Execute - Document anti-patterns (retry without understanding) and correct patterns (research-first) ### docs/Development/hypothesis-pm-autonomous-enhancement-2025-10-14.md - Add PDCA workflow hypothesis document for PM Agent autonomous enhancement ## Rationale PM Agent must never retry failed operations without understanding root causes. All warnings and errors require investigation via context7/WebFetch/documentation to ensure production-quality code and prevent technical debt accumulation. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(installer): add airis-mcp-gateway MCP server option ## Changes - Add airis-mcp-gateway to MCP server options in installer - Configuration: GitHub-based installation via uvx - Repository: https://github.com/oraios/airis-mcp-gateway - Purpose: Dynamic MCP Gateway for zero-token baseline and on-demand tool loading ## Implementation Added to setup/components/mcp.py self.mcp_servers dictionary with: - install_method: github - install_command: uvx test installation - run_command: uvx runtime execution - required: False (optional server) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local> Co-authored-by: Claude <noreply@anthropic.com>
6.9 KiB
6.9 KiB
Tavily MCP Server
Purpose: Web search and real-time information retrieval for research and current events
Triggers
- Web search requirements beyond Claude's knowledge cutoff
- Current events, news, and real-time information needs
- Market research and competitive analysis tasks
- Technical documentation not in training data
- Academic research requiring recent publications
- Fact-checking and verification needs
- Deep research investigations requiring multi-source analysis
/sc:researchcommand activation
Choose When
- Over WebSearch: When you need structured search with advanced filtering
- Over WebFetch: When you need multi-source search, not single page extraction
- For research: Comprehensive investigations requiring multiple sources
- For current info: Events, updates, or changes after knowledge cutoff
- Not for: Simple questions answerable from training, code generation, local file operations
Works Best With
- Sequential: Tavily provides raw information → Sequential analyzes and synthesizes
- Playwright: Tavily discovers URLs → Playwright extracts complex content
- Context7: Tavily searches for updates → Context7 provides stable documentation
- Serena: Tavily performs searches → Serena stores research sessions
Configuration
Requires TAVILY_API_KEY environment variable from https://app.tavily.com
Search Capabilities
- Web Search: General web searches with ranking algorithms
- News Search: Time-filtered news and current events
- Academic Search: Scholarly articles and research papers
- Domain Filtering: Include/exclude specific domains
- Content Extraction: Full-text extraction from search results
- Freshness Control: Prioritize recent content
- Multi-Round Searching: Iterative refinement based on gaps
Examples
"latest TypeScript features 2024" → Tavily (current technical information)
"OpenAI GPT updates this week" → Tavily (recent news and updates)
"quantum computing breakthroughs 2024" → Tavily (recent research)
"best practices React Server Components" → Tavily (current best practices)
"explain recursion" → Native Claude (general concept explanation)
"write a Python function" → Native Claude (code generation)
Search Patterns
Basic Search
Query: "search term"
→ Returns: Ranked results with snippets
Domain-Specific Search
Query: "search term"
Domains: ["arxiv.org", "github.com"]
→ Returns: Results from specified domains only
Time-Filtered Search
Query: "search term"
Recency: "week" | "month" | "year"
→ Returns: Recent results within timeframe
Deep Content Search
Query: "search term"
Extract: true
→ Returns: Full content extraction from top results
Quality Optimization
- Query Refinement: Iterate searches based on initial results
- Source Diversity: Ensure multiple perspectives in results
- Credibility Filtering: Prioritize authoritative sources
- Deduplication: Remove redundant information across sources
- Relevance Scoring: Focus on most pertinent results
Integration Flows
Research Flow
1. Tavily: Initial broad search
2. Sequential: Analyze and identify gaps
3. Tavily: Targeted follow-up searches
4. Sequential: Synthesize findings
5. Serena: Store research session
Fact-Checking Flow
1. Tavily: Search for claim verification
2. Tavily: Find contradicting sources
3. Sequential: Analyze evidence
4. Report: Present balanced findings
Competitive Analysis Flow
1. Tavily: Search competitor information
2. Tavily: Search market trends
3. Sequential: Comparative analysis
4. Context7: Technical comparisons
5. Report: Strategic insights
Deep Research Flow (DR Agent)
1. Planning: Decompose research question
2. Tavily: Execute planned searches
3. Analysis: Assess URL complexity
4. Routing: Simple → Tavily extract | Complex → Playwright
5. Synthesis: Combine all sources
6. Iteration: Refine based on gaps
Advanced Search Strategies
Multi-Hop Research
Initial_Search:
query: "core topic"
depth: broad
Follow_Up_1:
query: "entities from initial"
depth: targeted
Follow_Up_2:
query: "relationships discovered"
depth: deep
Synthesis:
combine: all_findings
resolve: contradictions
Adaptive Query Generation
Simple_Query:
- Direct search terms
- Single concept focus
Complex_Query:
- Multiple search variations
- Boolean operators
- Domain restrictions
- Time filters
Iterative_Query:
- Start broad
- Refine based on results
- Target specific gaps
Source Credibility Assessment
High_Credibility:
- Academic institutions
- Government sources
- Established media
- Official documentation
Medium_Credibility:
- Industry publications
- Expert blogs
- Community resources
Low_Credibility:
- User forums
- Social media
- Unverified sources
Performance Considerations
Search Optimization
- Batch similar searches together
- Cache search results for reuse
- Prioritize high-value sources
- Limit depth based on confidence
Rate Limiting
- Maximum searches per minute
- Token usage per search
- Result caching duration
- Parallel search limits
Cost Management
- Monitor API usage
- Set budget limits
- Optimize query efficiency
- Use caching effectively
Integration with DR Agent Architecture
Planning Strategy Support
Planning_Only:
- Direct query execution
- No refinement needed
Intent_Planning:
- Clarify search intent
- Generate focused queries
Unified:
- Present search plan
- Adjust based on feedback
Multi-Hop Execution
Hop_Management:
- Track search genealogy
- Build on previous results
- Detect circular references
- Maintain hop context
Self-Reflection Integration
Quality_Check:
- Assess result relevance
- Identify coverage gaps
- Trigger additional searches
- Calculate confidence scores
Case-Based Learning
Pattern_Storage:
- Successful query formulations
- Effective search strategies
- Domain preferences
- Time filter patterns
Error Handling
Common Issues
- API key not configured
- Rate limit exceeded
- Network timeout
- No results found
- Invalid query format
Fallback Strategies
- Use native WebSearch
- Try alternative queries
- Expand search scope
- Use cached results
- Simplify search terms
Best Practices
Query Formulation
- Start with clear, specific terms
- Use quotes for exact phrases
- Include relevant keywords
- Specify time ranges when needed
- Use domain filters strategically
Result Processing
- Verify source credibility
- Cross-reference multiple sources
- Check publication dates
- Identify potential biases
- Extract key information
Integration Workflow
- Plan search strategy
- Execute initial searches
- Analyze results
- Identify gaps
- Refine and iterate
- Synthesize findings
- Store valuable patterns