SuperClaude/docs/research/reflexion-integration-2025.md
kazuki nakai 882a0d8356
refactor: PM Agent complete independence from external MCP servers (#439)
* refactor: PM Agent complete independence from external MCP servers

## Summary
Implement graceful degradation to ensure PM Agent operates fully without
any MCP server dependencies. MCP servers now serve as optional enhancements
rather than required components.

## Changes

### Responsibility Separation (NEW)
- **PM Agent**: Development workflow orchestration (PDCA cycle, task management)
- **mindbase**: Memory management (long-term, freshness, error learning)
- **Built-in memory**: Session-internal context (volatile)

### 3-Layer Memory Architecture with Fallbacks
1. **Built-in Memory** [OPTIONAL]: Session context via MCP memory server
2. **mindbase** [OPTIONAL]: Long-term semantic search via airis-mcp-gateway
3. **Local Files** [ALWAYS]: Core functionality in docs/memory/

### Graceful Degradation Implementation
- All MCP operations marked with [ALWAYS] or [OPTIONAL]
- Explicit IF/ELSE fallback logic for every MCP call
- Dual storage: Always write to local files + optionally to mindbase
- Smart lookup: Semantic search (if available) → Text search (always works)

### Key Fallback Strategies

**Session Start**:
- mindbase available: search_conversations() for semantic context
- mindbase unavailable: Grep docs/memory/*.jsonl for text-based lookup

**Error Detection**:
- mindbase available: Semantic search for similar past errors
- mindbase unavailable: Grep docs/mistakes/ + solutions_learned.jsonl

**Knowledge Capture**:
- Always: echo >> docs/memory/patterns_learned.jsonl (persistent)
- Optional: mindbase.store() for semantic search enhancement

## Benefits
-  Zero external dependencies (100% functionality without MCP)
-  Enhanced capabilities when MCPs available (semantic search, freshness)
-  No functionality loss, only reduced search intelligence
-  Transparent degradation (no error messages, automatic fallback)

## Related Research
- Serena MCP investigation: Exposes tools (not resources), memory = markdown files
- mindbase superiority: PostgreSQL + pgvector > Serena memory features
- Best practices alignment: /Users/kazuki/github/airis-mcp-gateway/docs/mcp-best-practices.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: add PR template and pre-commit config

- Add structured PR template with Git workflow checklist
- Add pre-commit hooks for secret detection and Conventional Commits
- Enforce code quality gates (YAML/JSON/Markdown lint, shellcheck)

NOTE: Execute pre-commit inside Docker container to avoid host pollution:
  docker compose exec workspace uv tool install pre-commit
  docker compose exec workspace pre-commit run --all-files

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* docs: update PM Agent context with token efficiency architecture

- Add Layer 0 Bootstrap (150 tokens, 95% reduction)
- Document Intent Classification System (5 complexity levels)
- Add Progressive Loading strategy (5-layer)
- Document mindbase integration incentive (38% savings)
- Update with 2025-10-17 redesign details

* refactor: PM Agent command with progressive loading

- Replace auto-loading with User Request First philosophy
- Add 5-layer progressive context loading
- Implement intent classification system
- Add workflow metrics collection (.jsonl)
- Document graceful degradation strategy

* fix: installer improvements

Update installer logic for better reliability

* docs: add comprehensive development documentation

- Add architecture overview
- Add PM Agent improvements analysis
- Add parallel execution architecture
- Add CLI install improvements
- Add code style guide
- Add project overview
- Add install process analysis

* docs: add research documentation

Add LLM agent token efficiency research and analysis

* docs: add suggested commands reference

* docs: add session logs and testing documentation

- Add session analysis logs
- Add testing documentation

* feat: migrate CLI to typer + rich for modern UX

## What Changed

### New CLI Architecture (typer + rich)
- Created `superclaude/cli/` module with modern typer-based CLI
- Replaced custom UI utilities with rich native features
- Added type-safe command structure with automatic validation

### Commands Implemented
- **install**: Interactive installation with rich UI (progress, panels)
- **doctor**: System diagnostics with rich table output
- **config**: API key management with format validation

### Technical Improvements
- Dependencies: Added typer>=0.9.0, rich>=13.0.0, click>=8.0.0
- Entry Point: Updated pyproject.toml to use `superclaude.cli.app:cli_main`
- Tests: Added comprehensive smoke tests (11 passed)

### User Experience Enhancements
- Rich formatted help messages with panels and tables
- Automatic input validation with retry loops
- Clear error messages with actionable suggestions
- Non-interactive mode support for CI/CD

## Testing

```bash
uv run superclaude --help     # ✓ Works
uv run superclaude doctor     # ✓ Rich table output
uv run superclaude config show # ✓ API key management
pytest tests/test_cli_smoke.py # ✓ 11 passed, 1 skipped
```

## Migration Path

-  P0: Foundation complete (typer + rich + smoke tests)
- 🔜 P1: Pydantic validation models (next sprint)
- 🔜 P2: Enhanced error messages (next sprint)
- 🔜 P3: API key retry loops (next sprint)

## Performance Impact

- **Code Reduction**: Prepared for -300 lines (custom UI → rich)
- **Type Safety**: Automatic validation from type hints
- **Maintainability**: Framework primitives vs custom code

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate documentation directories

Merged claudedocs/ into docs/research/ for consistent documentation structure.

Changes:
- Moved all claudedocs/*.md files to docs/research/
- Updated all path references in documentation (EN/KR)
- Updated RULES.md and research.md command templates
- Removed claudedocs/ directory
- Removed ClaudeDocs/ from .gitignore

Benefits:
- Single source of truth for all research reports
- PEP8-compliant lowercase directory naming
- Clearer documentation organization
- Prevents future claudedocs/ directory creation

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* perf: reduce /sc:pm command output from 1652 to 15 lines

- Remove 1637 lines of documentation from command file
- Keep only minimal bootstrap message
- 99% token reduction on command execution
- Detailed specs remain in superclaude/agents/pm-agent.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* perf: split PM Agent into execution workflows and guide

- Reduce pm-agent.md from 735 to 429 lines (42% reduction)
- Move philosophy/examples to docs/agents/pm-agent-guide.md
- Execution workflows (PDCA, file ops) stay in pm-agent.md
- Guide (examples, quality standards) read once when needed

Token savings:
- Agent loading: ~6K → ~3.5K tokens (42% reduction)
- Total with pm.md: 71% overall reduction

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate PM Agent optimization and pending changes

PM Agent optimization (already committed separately):
- superclaude/commands/pm.md: 1652→14 lines
- superclaude/agents/pm-agent.md: 735→429 lines
- docs/agents/pm-agent-guide.md: new guide file

Other pending changes:
- setup: framework_docs, mcp, logger, remove ui.py
- superclaude: __main__, cli/app, cli/commands/install
- tests: test_ui updates
- scripts: workflow metrics analysis tools
- docs/memory: session state updates

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: simplify MCP installer to unified gateway with legacy mode

## Changes

### MCP Component (setup/components/mcp.py)
- Simplified to single airis-mcp-gateway by default
- Added legacy mode for individual official servers (sequential-thinking, context7, magic, playwright)
- Dynamic prerequisites based on mode:
  - Default: uv + claude CLI only
  - Legacy: node (18+) + npm + claude CLI
- Removed redundant server definitions

### CLI Integration
- Added --legacy flag to setup/cli/commands/install.py
- Added --legacy flag to superclaude/cli/commands/install.py
- Config passes legacy_mode to component installer

## Benefits
-  Simpler: 1 gateway vs 9+ individual servers
-  Lighter: No Node.js/npm required (default mode)
-  Unified: All tools in one gateway (sequential-thinking, context7, magic, playwright, serena, morphllm, tavily, chrome-devtools, git, puppeteer)
-  Flexible: --legacy flag for official servers if needed

## Usage
```bash
superclaude install              # Default: airis-mcp-gateway (推奨)
superclaude install --legacy     # Legacy: individual official servers
```

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: rename CoreComponent to FrameworkDocsComponent and add PM token tracking

## Changes

### Component Renaming (setup/components/)
- Renamed CoreComponent → FrameworkDocsComponent for clarity
- Updated all imports in __init__.py, agents.py, commands.py, mcp_docs.py, modes.py
- Better reflects the actual purpose (framework documentation files)

### PM Agent Enhancement (superclaude/commands/pm.md)
- Added token usage tracking instructions
- PM Agent now reports:
  1. Current token usage from system warnings
  2. Percentage used (e.g., "27% used" for 54K/200K)
  3. Status zone: 🟢 <75% | 🟡 75-85% | 🔴 >85%
- Helps prevent token exhaustion during long sessions

### UI Utilities (setup/utils/ui.py)
- Added new UI utility module for installer
- Provides consistent user interface components

## Benefits
-  Clearer component naming (FrameworkDocs vs Core)
-  PM Agent token awareness for efficiency
-  Better visual feedback with status zones

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor(pm-agent): minimize output verbosity (471→284 lines, 40% reduction)

**Problem**: PM Agent generated excessive output with redundant explanations
- "System Status Report" with decorative formatting
- Repeated "Common Tasks" lists user already knows
- Verbose session start/end protocols
- Duplicate file operations documentation

**Solution**: Compress without losing functionality
- Session Start: Reduced to symbol-only status (🟢 branch | nM nD | token%)
- Session End: Compressed to essential actions only
- File Operations: Consolidated from 2 sections to 1 line reference
- Self-Improvement: 5 phases → 1 unified workflow
- Output Rules: Explicit constraints to prevent Claude over-explanation

**Quality Preservation**:
-  All core functions retained (PDCA, memory, patterns, mistakes)
-  PARALLEL Read/Write preserved (performance critical)
-  Workflow unchanged (session lifecycle intact)
-  Added output constraints (prevents verbose generation)

**Reduction Method**:
- Deleted: Explanatory text, examples, redundant sections
- Retained: Action definitions, file paths, core workflows
- Added: Explicit output constraints to enforce minimalism

**Token Impact**: 40% reduction in agent documentation size
**Before**: Verbose multi-section report with task lists
**After**: Single line status: 🟢 integration | 15M 17D | 36%

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate MCP integration to unified gateway

**Changes**:
- Remove individual MCP server docs (superclaude/mcp/*.md)
- Remove MCP server configs (superclaude/mcp/configs/*.json)
- Delete MCP docs component (setup/components/mcp_docs.py)
- Simplify installer (setup/core/installer.py)
- Update components for unified gateway approach

**Rationale**:
- Unified gateway (airis-mcp-gateway) provides all MCP servers
- Individual docs/configs no longer needed (managed centrally)
- Reduces maintenance burden and file count
- Simplifies installation process

**Files Removed**: 17 MCP files (docs + configs)
**Installer Changes**: Removed legacy MCP installation logic

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: update version and component metadata

- Bump version (pyproject.toml, setup/__init__.py)
- Update CLAUDE.md import service references
- Reflect component structure changes

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local>
Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 05:43:06 +05:30

7.8 KiB

Reflexion Framework Integration - PM Agent

Date: 2025-10-17 Purpose: Integrate Reflexion self-reflection mechanism into PM Agent Source: Reflexion: Language Agents with Verbal Reinforcement Learning (2023, arXiv)


概要

Reflexionは、LLMエージェントが自分の行動を振り返り、エラーを検出し、次の試行で改善するフレームワーク。

核心メカニズム

Traditional Agent:
  Action → Observe → Repeat
  問題: 同じ間違いを繰り返す

Reflexion Agent:
  Action → Observe → Reflect → Learn → Improved Action
  利点: 自己修正、継続的改善

PM Agent統合アーキテクチャ

1. Self-Evaluation (自己評価)

タイミング: 実装完了後、完了報告前

Purpose: 自分の実装を客観的に評価

Questions:
  ❓ "この実装、本当に正しい?"
  ❓ "テストは全て通ってる?"
  ❓ "思い込みで判断してない?"
  ❓ "ユーザーの要件を満たしてる?"

Process:
  1. 実装内容を振り返る
  2. テスト結果を確認
  3. 要件との照合
  4. 証拠の有無確認

Output:
  - 完了判定 (✅ / ❌)
  - 不足項目リスト
  - 次のアクション提案

2. Self-Reflection (自己反省)

タイミング: エラー発生時、実装失敗時

Purpose: なぜ失敗したのかを理解する

Reflexion Example (Original Paper):
  "Reflection: I searched the wrong title for the show,
   which resulted in no results. I should have searched
   the show's main character to find the correct information."

PM Agent Application:
  "Reflection:
   ❌ What went wrong: JWT validation failed
   🔍 Root cause: Missing environment variable SUPABASE_JWT_SECRET
   💡 Why it happened: Didn't check .env.example before implementation
   ✅ Prevention: Always verify environment setup before starting
   📝 Learning: Add env validation to startup checklist"

Storage:
  → docs/memory/solutions_learned.jsonl
  → docs/mistakes/[feature]-YYYY-MM-DD.md
  → mindbase (if available)

3. Memory Integration (記憶統合)

Purpose: 過去の失敗から学習し、同じ間違いを繰り返さない

Error Occurred:
  1. Check Past Errors (Smart Lookup):
     IF mindbase available:
       → mindbase.search_conversations(
           query=error_message,
           category="error",
           limit=5
         )
       → Semantic search for similar past errors

     ELSE (mindbase unavailable):
       → Grep docs/memory/solutions_learned.jsonl
       → Grep docs/mistakes/ -r "error_message"
       → Text-based pattern matching

  2. IF similar error found:
     ✅ "⚠️ 過去に同じエラー発生済み"
     ✅ "解決策: [past_solution]"
     ✅ Apply known solution immediately
     → Skip lengthy investigation

  3. ELSE (new error):
     → Proceed with root cause investigation
     → Document solution for future reference

実装パターン

Pattern 1: Pre-Implementation Reflection

Before Starting:
  PM Agent Internal Dialogue:
    "Am I clear on what needs to be done?"
    → IF No: Ask user for clarification
    → IF Yes: Proceed

    "Do I have sufficient information?"
    → Check: Requirements, constraints, architecture
    → IF No: Research official docs, patterns
    → IF Yes: Proceed

    "What could go wrong?"
    → Identify risks
    → Plan mitigation strategies

Pattern 2: Mid-Implementation Check

During Implementation:
  Checkpoint Questions (every 30 min OR major milestone):
    ❓ "Am I still on track?"
    ❓ "Is this approach working?"
    ❓ "Any warnings or errors I'm ignoring?"

  IF deviation detected:
    → STOP
    → Reflect: "Why am I deviating?"
    → Reassess: "Should I course-correct or continue?"
    → Decide: Continue OR restart with new approach

Pattern 3: Post-Implementation Reflection

After Implementation:
  Completion Checklist:
    ✅ Tests all pass (actual results shown)
    ✅ Requirements all met (checklist verified)
    ✅ No warnings ignored (all investigated)
    ✅ Evidence documented (test outputs, code changes)

  IF checklist incomplete:
    → ❌ NOT complete
    → Report actual status honestly
    → Continue work

  IF checklist complete:
    → ✅ Feature complete
    → Document learnings
    → Update knowledge base

Hallucination Prevention Strategies

Strategy 1: Evidence Requirement

Principle: Never claim success without evidence

Claiming "Complete":
  MUST provide:
    1. Test Results (actual output)
    2. Code Changes (file list, diff summary)
    3. Validation Status (lint, typecheck, build)

  IF evidence missing:
    → BLOCK completion claim
    → Force verification first

Strategy 2: Self-Check Questions

Principle: Question own assumptions systematically

Before Reporting:
  Ask Self:
    ❓ "Did I actually RUN the tests?"
    ❓ "Are the test results REAL or assumed?"
    ❓ "Am I hiding any failures?"
    ❓ "Would I trust this implementation in production?"

  IF any answer is negative:
    → STOP reporting success
    → Fix issues first

Strategy 3: Confidence Thresholds

Principle: Admit uncertainty when confidence is low

Confidence Assessment:
  High (90-100%):
    → Proceed confidently
    → Official docs + existing patterns support approach

  Medium (70-89%):
    → Present options
    → Explain trade-offs
    → Recommend best choice

  Low (<70%):
    → STOP
    → Ask user for guidance
    → Never pretend to know

Token Budget Integration

Challenge: Reflection costs tokens

Solution: Budget-aware reflection based on task complexity

Simple Task (typo fix):
  Reflection Budget: 200 tokens
  Questions: "File edited? Tests pass?"

Medium Task (bug fix):
  Reflection Budget: 1,000 tokens
  Questions: "Root cause identified? Tests added? Regression prevented?"

Complex Task (feature):
  Reflection Budget: 2,500 tokens
  Questions: "All requirements met? Tests comprehensive? Integration verified? Documentation updated?"

Anti-Pattern:
  ❌ Unlimited reflection → Token explosion
  ✅ Budgeted reflection → Controlled cost

Success Metrics

Quantitative

Hallucination Detection Rate:
  Target: >90% (Reflexion paper: 94%)
  Measure: % of false claims caught by self-check

Error Recurrence Rate:
  Target: <10% (same error repeated)
  Measure: % of errors that occur twice

Confidence Accuracy:
  Target: >85% (confidence matches reality)
  Measure: High confidence → success rate

Qualitative

Culture Change:
  ✅ "わからないことをわからないと言う"
  ✅ "嘘をつかない、証拠を示す"
  ✅ "失敗を認める、次に改善する"

Behavioral Indicators:
  ✅ User questions reduce (clear communication)
  ✅ Rework reduces (first attempt accuracy increases)
  ✅ Trust increases (honest reporting)

Implementation Checklist

  • Self-Check質問システム (完了前検証)
  • Evidence Requirement (証拠要求)
  • Confidence Scoring (確信度評価)
  • Reflexion Pattern統合 (自己反省ループ)
  • Token-Budget-Aware Reflection (予算制約型振り返り)
  • 実装例とアンチパターン文書化
  • workflow_metrics.jsonl統合
  • テストと検証

References

  1. Reflexion: Language Agents with Verbal Reinforcement Learning

    • Authors: Noah Shinn et al.
    • Year: 2023
    • Key Insight: Self-reflection enables 94% error detection rate
  2. Self-Evaluation in AI Agents

    • Source: Galileo AI (2024)
    • Key Insight: Confidence scoring reduces hallucinations
  3. Token-Budget-Aware LLM Reasoning

    • Source: arXiv 2412.18547 (2024)
    • Key Insight: Budget constraints enable efficient reflection

End of Report