mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-18 02:06:36 +00:00
* refactor: PM Agent complete independence from external MCP servers ## Summary Implement graceful degradation to ensure PM Agent operates fully without any MCP server dependencies. MCP servers now serve as optional enhancements rather than required components. ## Changes ### Responsibility Separation (NEW) - **PM Agent**: Development workflow orchestration (PDCA cycle, task management) - **mindbase**: Memory management (long-term, freshness, error learning) - **Built-in memory**: Session-internal context (volatile) ### 3-Layer Memory Architecture with Fallbacks 1. **Built-in Memory** [OPTIONAL]: Session context via MCP memory server 2. **mindbase** [OPTIONAL]: Long-term semantic search via airis-mcp-gateway 3. **Local Files** [ALWAYS]: Core functionality in docs/memory/ ### Graceful Degradation Implementation - All MCP operations marked with [ALWAYS] or [OPTIONAL] - Explicit IF/ELSE fallback logic for every MCP call - Dual storage: Always write to local files + optionally to mindbase - Smart lookup: Semantic search (if available) → Text search (always works) ### Key Fallback Strategies **Session Start**: - mindbase available: search_conversations() for semantic context - mindbase unavailable: Grep docs/memory/*.jsonl for text-based lookup **Error Detection**: - mindbase available: Semantic search for similar past errors - mindbase unavailable: Grep docs/mistakes/ + solutions_learned.jsonl **Knowledge Capture**: - Always: echo >> docs/memory/patterns_learned.jsonl (persistent) - Optional: mindbase.store() for semantic search enhancement ## Benefits - ✅ Zero external dependencies (100% functionality without MCP) - ✅ Enhanced capabilities when MCPs available (semantic search, freshness) - ✅ No functionality loss, only reduced search intelligence - ✅ Transparent degradation (no error messages, automatic fallback) ## Related Research - Serena MCP investigation: Exposes tools (not resources), memory = markdown files - mindbase superiority: PostgreSQL + pgvector > Serena memory features - Best practices alignment: /Users/kazuki/github/airis-mcp-gateway/docs/mcp-best-practices.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * chore: add PR template and pre-commit config - Add structured PR template with Git workflow checklist - Add pre-commit hooks for secret detection and Conventional Commits - Enforce code quality gates (YAML/JSON/Markdown lint, shellcheck) NOTE: Execute pre-commit inside Docker container to avoid host pollution: docker compose exec workspace uv tool install pre-commit docker compose exec workspace pre-commit run --all-files 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: update PM Agent context with token efficiency architecture - Add Layer 0 Bootstrap (150 tokens, 95% reduction) - Document Intent Classification System (5 complexity levels) - Add Progressive Loading strategy (5-layer) - Document mindbase integration incentive (38% savings) - Update with 2025-10-17 redesign details * refactor: PM Agent command with progressive loading - Replace auto-loading with User Request First philosophy - Add 5-layer progressive context loading - Implement intent classification system - Add workflow metrics collection (.jsonl) - Document graceful degradation strategy * fix: installer improvements Update installer logic for better reliability * docs: add comprehensive development documentation - Add architecture overview - Add PM Agent improvements analysis - Add parallel execution architecture - Add CLI install improvements - Add code style guide - Add project overview - Add install process analysis * docs: add research documentation Add LLM agent token efficiency research and analysis * docs: add suggested commands reference * docs: add session logs and testing documentation - Add session analysis logs - Add testing documentation * feat: migrate CLI to typer + rich for modern UX ## What Changed ### New CLI Architecture (typer + rich) - Created `superclaude/cli/` module with modern typer-based CLI - Replaced custom UI utilities with rich native features - Added type-safe command structure with automatic validation ### Commands Implemented - **install**: Interactive installation with rich UI (progress, panels) - **doctor**: System diagnostics with rich table output - **config**: API key management with format validation ### Technical Improvements - Dependencies: Added typer>=0.9.0, rich>=13.0.0, click>=8.0.0 - Entry Point: Updated pyproject.toml to use `superclaude.cli.app:cli_main` - Tests: Added comprehensive smoke tests (11 passed) ### User Experience Enhancements - Rich formatted help messages with panels and tables - Automatic input validation with retry loops - Clear error messages with actionable suggestions - Non-interactive mode support for CI/CD ## Testing ```bash uv run superclaude --help # ✓ Works uv run superclaude doctor # ✓ Rich table output uv run superclaude config show # ✓ API key management pytest tests/test_cli_smoke.py # ✓ 11 passed, 1 skipped ``` ## Migration Path - ✅ P0: Foundation complete (typer + rich + smoke tests) - 🔜 P1: Pydantic validation models (next sprint) - 🔜 P2: Enhanced error messages (next sprint) - 🔜 P3: API key retry loops (next sprint) ## Performance Impact - **Code Reduction**: Prepared for -300 lines (custom UI → rich) - **Type Safety**: Automatic validation from type hints - **Maintainability**: Framework primitives vs custom code 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate documentation directories Merged claudedocs/ into docs/research/ for consistent documentation structure. Changes: - Moved all claudedocs/*.md files to docs/research/ - Updated all path references in documentation (EN/KR) - Updated RULES.md and research.md command templates - Removed claudedocs/ directory - Removed ClaudeDocs/ from .gitignore Benefits: - Single source of truth for all research reports - PEP8-compliant lowercase directory naming - Clearer documentation organization - Prevents future claudedocs/ directory creation 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * perf: reduce /sc:pm command output from 1652 to 15 lines - Remove 1637 lines of documentation from command file - Keep only minimal bootstrap message - 99% token reduction on command execution - Detailed specs remain in superclaude/agents/pm-agent.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * perf: split PM Agent into execution workflows and guide - Reduce pm-agent.md from 735 to 429 lines (42% reduction) - Move philosophy/examples to docs/agents/pm-agent-guide.md - Execution workflows (PDCA, file ops) stay in pm-agent.md - Guide (examples, quality standards) read once when needed Token savings: - Agent loading: ~6K → ~3.5K tokens (42% reduction) - Total with pm.md: 71% overall reduction 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate PM Agent optimization and pending changes PM Agent optimization (already committed separately): - superclaude/commands/pm.md: 1652→14 lines - superclaude/agents/pm-agent.md: 735→429 lines - docs/agents/pm-agent-guide.md: new guide file Other pending changes: - setup: framework_docs, mcp, logger, remove ui.py - superclaude: __main__, cli/app, cli/commands/install - tests: test_ui updates - scripts: workflow metrics analysis tools - docs/memory: session state updates 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: simplify MCP installer to unified gateway with legacy mode ## Changes ### MCP Component (setup/components/mcp.py) - Simplified to single airis-mcp-gateway by default - Added legacy mode for individual official servers (sequential-thinking, context7, magic, playwright) - Dynamic prerequisites based on mode: - Default: uv + claude CLI only - Legacy: node (18+) + npm + claude CLI - Removed redundant server definitions ### CLI Integration - Added --legacy flag to setup/cli/commands/install.py - Added --legacy flag to superclaude/cli/commands/install.py - Config passes legacy_mode to component installer ## Benefits - ✅ Simpler: 1 gateway vs 9+ individual servers - ✅ Lighter: No Node.js/npm required (default mode) - ✅ Unified: All tools in one gateway (sequential-thinking, context7, magic, playwright, serena, morphllm, tavily, chrome-devtools, git, puppeteer) - ✅ Flexible: --legacy flag for official servers if needed ## Usage ```bash superclaude install # Default: airis-mcp-gateway (推奨) superclaude install --legacy # Legacy: individual official servers ``` 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: rename CoreComponent to FrameworkDocsComponent and add PM token tracking ## Changes ### Component Renaming (setup/components/) - Renamed CoreComponent → FrameworkDocsComponent for clarity - Updated all imports in __init__.py, agents.py, commands.py, mcp_docs.py, modes.py - Better reflects the actual purpose (framework documentation files) ### PM Agent Enhancement (superclaude/commands/pm.md) - Added token usage tracking instructions - PM Agent now reports: 1. Current token usage from system warnings 2. Percentage used (e.g., "27% used" for 54K/200K) 3. Status zone: 🟢 <75% | 🟡 75-85% | 🔴 >85% - Helps prevent token exhaustion during long sessions ### UI Utilities (setup/utils/ui.py) - Added new UI utility module for installer - Provides consistent user interface components ## Benefits - ✅ Clearer component naming (FrameworkDocs vs Core) - ✅ PM Agent token awareness for efficiency - ✅ Better visual feedback with status zones 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor(pm-agent): minimize output verbosity (471→284 lines, 40% reduction) **Problem**: PM Agent generated excessive output with redundant explanations - "System Status Report" with decorative formatting - Repeated "Common Tasks" lists user already knows - Verbose session start/end protocols - Duplicate file operations documentation **Solution**: Compress without losing functionality - Session Start: Reduced to symbol-only status (🟢 branch | nM nD | token%) - Session End: Compressed to essential actions only - File Operations: Consolidated from 2 sections to 1 line reference - Self-Improvement: 5 phases → 1 unified workflow - Output Rules: Explicit constraints to prevent Claude over-explanation **Quality Preservation**: - ✅ All core functions retained (PDCA, memory, patterns, mistakes) - ✅ PARALLEL Read/Write preserved (performance critical) - ✅ Workflow unchanged (session lifecycle intact) - ✅ Added output constraints (prevents verbose generation) **Reduction Method**: - Deleted: Explanatory text, examples, redundant sections - Retained: Action definitions, file paths, core workflows - Added: Explicit output constraints to enforce minimalism **Token Impact**: 40% reduction in agent documentation size **Before**: Verbose multi-section report with task lists **After**: Single line status: 🟢 integration | 15M 17D | 36% 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate MCP integration to unified gateway **Changes**: - Remove individual MCP server docs (superclaude/mcp/*.md) - Remove MCP server configs (superclaude/mcp/configs/*.json) - Delete MCP docs component (setup/components/mcp_docs.py) - Simplify installer (setup/core/installer.py) - Update components for unified gateway approach **Rationale**: - Unified gateway (airis-mcp-gateway) provides all MCP servers - Individual docs/configs no longer needed (managed centrally) - Reduces maintenance burden and file count - Simplifies installation process **Files Removed**: 17 MCP files (docs + configs) **Installer Changes**: Removed legacy MCP installation logic 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * chore: update version and component metadata - Bump version (pyproject.toml, setup/__init__.py) - Update CLAUDE.md import service references - Reflect component structure changes 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local> Co-authored-by: Claude <noreply@anthropic.com>
7.8 KiB
7.8 KiB
Reflexion Framework Integration - PM Agent
Date: 2025-10-17 Purpose: Integrate Reflexion self-reflection mechanism into PM Agent Source: Reflexion: Language Agents with Verbal Reinforcement Learning (2023, arXiv)
概要
Reflexionは、LLMエージェントが自分の行動を振り返り、エラーを検出し、次の試行で改善するフレームワーク。
核心メカニズム
Traditional Agent:
Action → Observe → Repeat
問題: 同じ間違いを繰り返す
Reflexion Agent:
Action → Observe → Reflect → Learn → Improved Action
利点: 自己修正、継続的改善
PM Agent統合アーキテクチャ
1. Self-Evaluation (自己評価)
タイミング: 実装完了後、完了報告前
Purpose: 自分の実装を客観的に評価
Questions:
❓ "この実装、本当に正しい?"
❓ "テストは全て通ってる?"
❓ "思い込みで判断してない?"
❓ "ユーザーの要件を満たしてる?"
Process:
1. 実装内容を振り返る
2. テスト結果を確認
3. 要件との照合
4. 証拠の有無確認
Output:
- 完了判定 (✅ / ❌)
- 不足項目リスト
- 次のアクション提案
2. Self-Reflection (自己反省)
タイミング: エラー発生時、実装失敗時
Purpose: なぜ失敗したのかを理解する
Reflexion Example (Original Paper):
"Reflection: I searched the wrong title for the show,
which resulted in no results. I should have searched
the show's main character to find the correct information."
PM Agent Application:
"Reflection:
❌ What went wrong: JWT validation failed
🔍 Root cause: Missing environment variable SUPABASE_JWT_SECRET
💡 Why it happened: Didn't check .env.example before implementation
✅ Prevention: Always verify environment setup before starting
📝 Learning: Add env validation to startup checklist"
Storage:
→ docs/memory/solutions_learned.jsonl
→ docs/mistakes/[feature]-YYYY-MM-DD.md
→ mindbase (if available)
3. Memory Integration (記憶統合)
Purpose: 過去の失敗から学習し、同じ間違いを繰り返さない
Error Occurred:
1. Check Past Errors (Smart Lookup):
IF mindbase available:
→ mindbase.search_conversations(
query=error_message,
category="error",
limit=5
)
→ Semantic search for similar past errors
ELSE (mindbase unavailable):
→ Grep docs/memory/solutions_learned.jsonl
→ Grep docs/mistakes/ -r "error_message"
→ Text-based pattern matching
2. IF similar error found:
✅ "⚠️ 過去に同じエラー発生済み"
✅ "解決策: [past_solution]"
✅ Apply known solution immediately
→ Skip lengthy investigation
3. ELSE (new error):
→ Proceed with root cause investigation
→ Document solution for future reference
実装パターン
Pattern 1: Pre-Implementation Reflection
Before Starting:
PM Agent Internal Dialogue:
"Am I clear on what needs to be done?"
→ IF No: Ask user for clarification
→ IF Yes: Proceed
"Do I have sufficient information?"
→ Check: Requirements, constraints, architecture
→ IF No: Research official docs, patterns
→ IF Yes: Proceed
"What could go wrong?"
→ Identify risks
→ Plan mitigation strategies
Pattern 2: Mid-Implementation Check
During Implementation:
Checkpoint Questions (every 30 min OR major milestone):
❓ "Am I still on track?"
❓ "Is this approach working?"
❓ "Any warnings or errors I'm ignoring?"
IF deviation detected:
→ STOP
→ Reflect: "Why am I deviating?"
→ Reassess: "Should I course-correct or continue?"
→ Decide: Continue OR restart with new approach
Pattern 3: Post-Implementation Reflection
After Implementation:
Completion Checklist:
✅ Tests all pass (actual results shown)
✅ Requirements all met (checklist verified)
✅ No warnings ignored (all investigated)
✅ Evidence documented (test outputs, code changes)
IF checklist incomplete:
→ ❌ NOT complete
→ Report actual status honestly
→ Continue work
IF checklist complete:
→ ✅ Feature complete
→ Document learnings
→ Update knowledge base
Hallucination Prevention Strategies
Strategy 1: Evidence Requirement
Principle: Never claim success without evidence
Claiming "Complete":
MUST provide:
1. Test Results (actual output)
2. Code Changes (file list, diff summary)
3. Validation Status (lint, typecheck, build)
IF evidence missing:
→ BLOCK completion claim
→ Force verification first
Strategy 2: Self-Check Questions
Principle: Question own assumptions systematically
Before Reporting:
Ask Self:
❓ "Did I actually RUN the tests?"
❓ "Are the test results REAL or assumed?"
❓ "Am I hiding any failures?"
❓ "Would I trust this implementation in production?"
IF any answer is negative:
→ STOP reporting success
→ Fix issues first
Strategy 3: Confidence Thresholds
Principle: Admit uncertainty when confidence is low
Confidence Assessment:
High (90-100%):
→ Proceed confidently
→ Official docs + existing patterns support approach
Medium (70-89%):
→ Present options
→ Explain trade-offs
→ Recommend best choice
Low (<70%):
→ STOP
→ Ask user for guidance
→ Never pretend to know
Token Budget Integration
Challenge: Reflection costs tokens
Solution: Budget-aware reflection based on task complexity
Simple Task (typo fix):
Reflection Budget: 200 tokens
Questions: "File edited? Tests pass?"
Medium Task (bug fix):
Reflection Budget: 1,000 tokens
Questions: "Root cause identified? Tests added? Regression prevented?"
Complex Task (feature):
Reflection Budget: 2,500 tokens
Questions: "All requirements met? Tests comprehensive? Integration verified? Documentation updated?"
Anti-Pattern:
❌ Unlimited reflection → Token explosion
✅ Budgeted reflection → Controlled cost
Success Metrics
Quantitative
Hallucination Detection Rate:
Target: >90% (Reflexion paper: 94%)
Measure: % of false claims caught by self-check
Error Recurrence Rate:
Target: <10% (same error repeated)
Measure: % of errors that occur twice
Confidence Accuracy:
Target: >85% (confidence matches reality)
Measure: High confidence → success rate
Qualitative
Culture Change:
✅ "わからないことをわからないと言う"
✅ "嘘をつかない、証拠を示す"
✅ "失敗を認める、次に改善する"
Behavioral Indicators:
✅ User questions reduce (clear communication)
✅ Rework reduces (first attempt accuracy increases)
✅ Trust increases (honest reporting)
Implementation Checklist
- Self-Check質問システム (完了前検証)
- Evidence Requirement (証拠要求)
- Confidence Scoring (確信度評価)
- Reflexion Pattern統合 (自己反省ループ)
- Token-Budget-Aware Reflection (予算制約型振り返り)
- 実装例とアンチパターン文書化
- workflow_metrics.jsonl統合
- テストと検証
References
-
Reflexion: Language Agents with Verbal Reinforcement Learning
- Authors: Noah Shinn et al.
- Year: 2023
- Key Insight: Self-reflection enables 94% error detection rate
-
Self-Evaluation in AI Agents
- Source: Galileo AI (2024)
- Key Insight: Confidence scoring reduces hallucinations
-
Token-Budget-Aware LLM Reasoning
- Source: arXiv 2412.18547 (2024)
- Key Insight: Budget constraints enable efficient reflection
End of Report