mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-24 05:07:10 +00:00
* fix(orchestration): add WebFetch auto-trigger for infrastructure configuration Problem: Infrastructure configuration changes (e.g., Traefik port settings) were being made based on assumptions without consulting official documentation, violating the 'Evidence > assumptions' principle in PRINCIPLES.md. Solution: - Added Infrastructure Configuration Validation section to MODE_Orchestration.md - Auto-triggers WebFetch for infrastructure tools (Traefik, nginx, Docker, etc.) - Enforces MODE_DeepResearch activation for investigation - BLOCKS assumption-based configuration changes Testing: Verified WebFetch successfully retrieves Traefik official docs (port 80 default) This prevents production outages from infrastructure misconfiguration by ensuring all technical recommendations are backed by official documentation. * feat: Add PM Agent (Project Manager Agent) for seamless orchestration Introduces PM Agent as the default orchestration layer that coordinates all sub-agents and manages workflows automatically. Key Features: - Default orchestration: All user interactions handled by PM Agent - Auto-delegation: Intelligent sub-agent selection based on task analysis - Docker Gateway integration: Zero-token baseline with dynamic MCP loading - Self-improvement loop: Automatic documentation of patterns and mistakes - Optional override: Users can specify sub-agents explicitly if desired Architecture: - Agent spec: SuperClaude/Agents/pm-agent.md - Command: SuperClaude/Commands/pm.md - Updated docs: README.md (15→16 agents), agents.md (new Orchestration category) User Experience: - Default: PM Agent handles everything (seamless, no manual routing) - Optional: Explicit --agent flag for direct sub-agent access - Both modes available simultaneously (no user downside) Implementation Status: - ✅ Specification complete - ✅ Documentation complete - ⏳ Prototype implementation needed - ⏳ Docker Gateway integration needed - ⏳ Testing and validation needed Refs: kazukinakai/docker-mcp-gateway (IRIS MCP Gateway integration) * feat: Add Agent Orchestration rules for PM Agent default activation Implements PM Agent as the default orchestration layer in RULES.md. Key Changes: - New 'Agent Orchestration' section (CRITICAL priority) - PM Agent receives ALL user requests by default - Manual override with @agent-[name] bypasses PM Agent - Agent Selection Priority clearly defined: 1. Manual override → Direct routing 2. Default → PM Agent → Auto-delegation 3. Delegation based on keywords, file types, complexity, context User Experience: - Default: PM Agent handles everything (seamless) - Override: @agent-[name] for direct specialist access - Transparent: PM Agent reports delegation decisions This establishes PM Agent as the orchestration layer while respecting existing auto-activation patterns and manual overrides. Next Steps: - Local testing in agiletec project - Iteration based on actual behavior - Documentation updates as needed * refactor(pm-agent): redesign as self-improvement meta-layer Problem Resolution: PM Agent's initial design competed with existing auto-activation for task routing, creating confusion about orchestration responsibilities and adding unnecessary complexity. Design Change: Redefined PM Agent as a meta-layer agent that operates AFTER specialist agents complete tasks, focusing on: - Post-implementation documentation and pattern recording - Immediate mistake analysis with prevention checklists - Monthly documentation maintenance and noise reduction - Pattern extraction and knowledge synthesis Two-Layer Orchestration System: 1. Task Execution Layer: Existing auto-activation handles task routing (unchanged) 2. Self-Improvement Layer: PM Agent meta-layer handles documentation (new) Files Modified: - SuperClaude/Agents/pm-agent.md: Complete rewrite with meta-layer design - Category: orchestration → meta - Triggers: All user interactions → Post-implementation, mistakes, monthly - Behavioral Mindset: Continuous learning system - Self-Improvement Workflow: BEFORE/DURING/AFTER/MISTAKE RECOVERY/MAINTENANCE - SuperClaude/Core/RULES.md: Agent Orchestration section updated - Split into Task Execution Layer + Self-Improvement Layer - Added orchestration flow diagram - Clarified PM Agent activates AFTER task completion - README.md: Updated PM Agent description - "orchestrates all interactions" → "ensures continuous learning" - Docs/User-Guide/agents.md: PM Agent section rewritten - Section: Orchestration Agent → Meta-Layer Agent - Expertise: Project orchestration → Self-improvement workflow executor - Examples: Task coordination → Post-implementation documentation - PR_DOCUMENTATION.md: Comprehensive PR documentation added - Summary, motivation, changes, testing, breaking changes - Two-layer orchestration system diagram - Verification checklist Integration Validated: Tested with agiletec project's self-improvement-workflow.md: ✅ PM Agent aligns with existing BEFORE/DURING/AFTER/MISTAKE RECOVERY phases ✅ Complements (not competes with) existing workflow ✅ agiletec workflow defines WHAT, PM Agent defines WHO executes it Breaking Changes: None - Existing auto-activation continues unchanged - Specialist agents unaffected - User workflows remain the same - New capability: Automatic documentation and knowledge maintenance Value Proposition: Transforms SuperClaude into a continuously learning system that accumulates knowledge, prevents recurring mistakes, and maintains fresh documentation without manual intervention. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: add Claude Code conversation history management research Research covering .jsonl file structure, performance impact, and retention policies. Content: - Claude Code .jsonl file format and message types - Performance issues from GitHub (memory leaks, conversation compaction) - Retention policies (consumer vs enterprise) - Rotation recommendations based on actual data - File history snapshot tracking mechanics Source: Moved from agiletec project (research applicable to all Claude Code projects) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: add Development documentation structure Phase 1: Documentation Structure complete - Add Docs/Development/ directory for development documentation - Add ARCHITECTURE.md - System architecture with PM Agent meta-layer - Add ROADMAP.md - 5-phase development plan with checkboxes - Add TASKS.md - Daily task tracking with progress indicators - Add PROJECT_STATUS.md - Current status dashboard and metrics - Add pm-agent-integration.md - Implementation guide for PM Agent mode This establishes comprehensive documentation foundation for: - System architecture understanding - Development planning and tracking - Implementation guidance - Progress visibility Related: #pm-agent-mode #documentation #phase-1 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat: PM Agent session lifecycle and PDCA implementation Phase 2: PM Agent Mode Integration (Design Phase) Commands/pm.md updates: - Add "Always-Active Foundation Layer" concept - Add Session Lifecycle (Session Start/During Work/Session End) - Add PDCA Cycle (Plan/Do/Check/Act) automation - Add Serena MCP Memory Integration (list/read/write_memory) - Document auto-activation triggers Agents/pm-agent.md updates: - Add Session Start Protocol (MANDATORY auto-activation) - Add During Work PDCA Cycle with example workflows - Add Session End Protocol with state preservation - Add PDCA Self-Evaluation Pattern - Add Documentation Strategy (temp → patterns/mistakes) - Add Memory Operations Reference Key Features: - Session start auto-activation for context restoration - 30-minute checkpoint saves during work - Self-evaluation with think_about_* operations - Systematic documentation lifecycle - Knowledge evolution to CLAUDE.md Implementation Status: - ✅ Design complete (Commands/pm.md, Agents/pm-agent.md) - ⏳ Implementation pending (Core components) - ⏳ Serena MCP integration pending Salvaged from mistaken development in ~/.claude directory Related: #pm-agent-mode #session-lifecycle #pdca-cycle #phase-2 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * fix: disable Serena MCP auto-browser launch Disable web dashboard and GUI log window auto-launch in Serena MCP server to prevent intrusive browser popups on startup. Users can still manually access the dashboard at http://localhost:24282/dashboard/ if needed. Changes: - Add CLI flags to Serena run command: - --enable-web-dashboard false - --enable-gui-log-window false - Ensures Git-tracked configuration (no reliance on ~/.serena/serena_config.yml) - Aligns with AIRIS MCP Gateway integration approach 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: rename directories to lowercase for PEP8 compliance - Rename superclaude/Agents -> superclaude/agents - Rename superclaude/Commands -> superclaude/commands - Rename superclaude/Core -> superclaude/core - Rename superclaude/Examples -> superclaude/examples - Rename superclaude/MCP -> superclaude/mcp - Rename superclaude/Modes -> superclaude/modes This change follows Python PEP8 naming conventions for package directories. * style: fix PEP8 violations and update package name to lowercase Changes: - Format all Python files with black (43 files reformatted) - Update package name from 'SuperClaude' to 'superclaude' in pyproject.toml - Fix import statements to use lowercase package name - Add missing imports (timedelta, __version__) - Remove old SuperClaude.egg-info directory PEP8 violations reduced from 2672 to 701 (mostly E501 line length due to black's 88 char vs flake8's 79 char limit). * docs: add PM Agent development documentation Add comprehensive PM Agent development documentation: - PM Agent ideal workflow (7-phase autonomous cycle) - Project structure understanding (Git vs installed environment) - Installation flow understanding (CommandsComponent behavior) - Task management system (current-tasks.md) Purpose: Eliminate repeated explanations and enable autonomous PDCA cycles 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(pm-agent): add self-correcting execution and warning investigation culture ## Changes ### superclaude/commands/pm.md - Add "Self-Correcting Execution" section with root cause analysis protocol - Add "Warning/Error Investigation Culture" section enforcing zero-tolerance for dismissal - Define error detection protocol: STOP → Investigate → Hypothesis → Different Solution → Execute - Document anti-patterns (retry without understanding) and correct patterns (research-first) ### docs/Development/hypothesis-pm-autonomous-enhancement-2025-10-14.md - Add PDCA workflow hypothesis document for PM Agent autonomous enhancement ## Rationale PM Agent must never retry failed operations without understanding root causes. All warnings and errors require investigation via context7/WebFetch/documentation to ensure production-quality code and prevent technical debt accumulation. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * feat(installer): add airis-mcp-gateway MCP server option ## Changes - Add airis-mcp-gateway to MCP server options in installer - Configuration: GitHub-based installation via uvx - Repository: https://github.com/oraios/airis-mcp-gateway - Purpose: Dynamic MCP Gateway for zero-token baseline and on-demand tool loading ## Implementation Added to setup/components/mcp.py self.mcp_servers dictionary with: - install_method: github - install_command: uvx test installation - run_command: uvx runtime execution - required: False (optional server) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local> Co-authored-by: Claude <noreply@anthropic.com>
12 KiB
12 KiB
Deep Research Workflows
Example 1: Planning-Only Strategy
Scenario
Clear research question: "Latest TensorFlow 3.0 features"
Execution
/sc:research "Latest TensorFlow 3.0 features" --strategy planning-only --depth standard
Workflow
1. Planning (Immediate):
- Decompose: Official docs, changelog, tutorials
- No user clarification needed
2. Execution:
- Hop 1: Official TensorFlow documentation
- Hop 2: Recent tutorials and examples
- Confidence: 0.85 achieved
3. Synthesis:
- Features list with examples
- Migration guide references
- Performance comparisons
Example 2: Intent-to-Planning Strategy
Scenario
Ambiguous request: "AI safety"
Execution
/sc:research "AI safety" --strategy intent-planning --depth deep
Workflow
1. Intent Clarification:
Questions:
- "Are you interested in technical AI alignment, policy/governance, or current events?"
- "What's your background level (researcher, developer, general interest)?"
- "Any specific AI systems or risks of concern?"
2. User Response:
- "Technical alignment for LLMs, researcher level"
3. Refined Planning:
- Focus on alignment techniques
- Academic sources priority
- Include recent papers
4. Multi-Hop Execution:
- Hop 1: Recent alignment papers
- Hop 2: Key researchers and labs
- Hop 3: Emerging techniques
- Hop 4: Open problems
5. Self-Reflection:
- Coverage: Complete ✓
- Depth: Adequate ✓
- Confidence: 0.82 ✓
Example 3: Unified Intent-Planning with Replanning
Scenario
Complex research: "Build AI startup competitive analysis"
Execution
/sc:research "Build AI startup competitive analysis" --strategy unified --hops 5
Workflow
1. Initial Plan Presentation:
Proposed Research Areas:
- Current AI startup landscape
- Funding and valuations
- Technology differentiators
- Market positioning
- Growth strategies
"Does this cover your needs? Any specific competitors or aspects to focus on?"
2. User Adjustment:
"Focus on code generation tools, include pricing and technical capabilities"
3. Revised Multi-Hop Research:
- Hop 1: List of code generation startups
- Hop 2: Technical capabilities comparison
- Hop 3: Pricing and business models
- Hop 4: Customer reviews and adoption
- Hop 5: Investment and growth metrics
4. Mid-Research Replanning:
- Low confidence on technical details (0.55)
- Switch to Playwright for interactive demos
- Add GitHub repository analysis
5. Quality Gate Check:
- Technical coverage: Improved to 0.78 ✓
- Pricing data: Complete 0.90 ✓
- Competitive matrix: Generated ✓
Example 4: Case-Based Research with Learning
Scenario
Similar to previous research: "Rust async runtime comparison"
Execution
/sc:research "Rust async runtime comparison" --memory enabled
Workflow
1. Case Retrieval:
Found Similar Case:
- "Go concurrency patterns" research
- Successful pattern: Technical benchmarks + code examples + community feedback
2. Adapted Strategy:
- Use similar structure for Rust
- Focus on: Tokio, async-std, smol
- Include benchmarks and examples
3. Execution with Known Patterns:
- Skip broad searches
- Direct to technical sources
- Use proven extraction methods
4. New Learning Captured:
- Rust community prefers different metrics than Go
- Crates.io provides useful statistics
- Discord communities have valuable discussions
5. Memory Update:
- Store successful Rust research patterns
- Note language-specific source preferences
- Save for future Rust queries
Example 5: Self-Reflective Refinement Loop
Scenario
Evolving research: "Quantum computing for optimization"
Execution
/sc:research "Quantum computing for optimization" --confidence 0.8 --depth exhaustive
Workflow
1. Initial Research Phase:
- Academic papers collected
- Basic concepts understood
- Confidence: 0.65 (below threshold)
2. Self-Reflection Analysis:
Gaps Identified:
- Practical implementations missing
- No industry use cases
- Mathematical details unclear
3. Replanning Decision:
- Add industry reports
- Include video tutorials for math
- Search for code implementations
4. Enhanced Research:
- Hop 1→2: Papers → Authors → Implementations
- Hop 3→4: Companies → Case studies
- Hop 5: Tutorial videos for complex math
5. Quality Achievement:
- Confidence raised to 0.82 ✓
- Comprehensive coverage achieved
- Multiple perspectives included
Example 6: Technical Documentation Research with Playwright
Scenario
Research the latest Next.js 14 App Router features
Execution
/sc:research "Next.js 14 App Router complete guide" --depth deep --scrape selective --screenshots
Workflow
1. Tavily Search:
- Find official docs, tutorials, blog posts
- Identify JavaScript-heavy documentation sites
2. URL Analysis:
- Next.js docs → JavaScript rendering required
- Blog posts → Static content, Tavily sufficient
- Video tutorials → Need transcript extraction
3. Playwright Navigation:
- Navigate to official documentation
- Handle interactive code examples
- Capture screenshots of UI components
4. Dynamic Extraction:
- Extract code samples
- Capture interactive demos
- Document routing patterns
5. Synthesis:
- Combine official docs with community tutorials
- Create comprehensive guide with visuals
- Include code examples and best practices
Example 7: Competitive Intelligence with Visual Documentation
Scenario
Analyze competitor pricing and features
Execution
/sc:research "AI writing assistant tools pricing features 2024" --scrape all --screenshots --interactive
Workflow
1. Market Discovery:
- Tavily finds: Jasper, Copy.ai, Writesonic, etc.
- Identify pricing pages and feature lists
2. Complexity Assessment:
- Dynamic pricing calculators detected
- Interactive feature comparisons found
- Login-gated content identified
3. Playwright Extraction:
- Navigate to each pricing page
- Interact with pricing sliders
- Capture screenshots of pricing tiers
4. Feature Analysis:
- Extract feature matrices
- Compare capabilities
- Document limitations
5. Report Generation:
- Competitive positioning matrix
- Visual pricing comparison
- Feature gap analysis
- Strategic recommendations
Example 8: Academic Research with Authentication
Scenario
Research latest machine learning papers
Execution
/sc:research "transformer architecture improvements 2024" --depth exhaustive --auth --scrape auto
Workflow
1. Academic Search:
- Tavily finds papers on arXiv, IEEE, ACM
- Identify open vs. gated content
2. Access Strategy:
- arXiv: Direct access, no auth needed
- IEEE: Institutional access required
- ACM: Mixed access levels
3. Extraction Approach:
- Public papers: Tavily extraction
- Gated content: Playwright with auth
- PDFs: Download and process
4. Citation Network:
- Follow reference chains
- Identify key contributors
- Map research lineage
5. Literature Synthesis:
- Chronological development
- Key innovations identified
- Future directions mapped
- Comprehensive bibliography
Example 9: Real-time Market Data Research
Scenario
Gather current cryptocurrency market analysis
Execution
/sc:research "cryptocurrency market analysis BTC ETH 2024" --scrape all --interactive --screenshots
Workflow
1. Market Discovery:
- Find: CoinMarketCap, CoinGecko, TradingView
- Identify real-time data sources
2. Dynamic Content Handling:
- Playwright loads live charts
- Capture price movements
- Extract volume data
3. Interactive Analysis:
- Interact with chart timeframes
- Toggle technical indicators
- Capture different views
4. Data Synthesis:
- Current market conditions
- Technical analysis
- Sentiment indicators
- Visual documentation
5. Report Output:
- Market snapshot with charts
- Technical analysis summary
- Trading volume trends
- Risk assessment
Example 10: Multi-Domain Research with Parallel Execution
Scenario
Comprehensive analysis of "AI in healthcare 2024"
Execution
/sc:research "AI in healthcare applications 2024" --depth exhaustive --hops 5 --parallel
Workflow
1. Domain Decomposition:
Parallel Searches:
- Medical AI applications
- Regulatory landscape
- Market analysis
- Technical implementations
- Ethical considerations
2. Multi-Hop Exploration:
Each Domain:
- Hop 1: Broad landscape
- Hop 2: Key players
- Hop 3: Case studies
- Hop 4: Challenges
- Hop 5: Future trends
3. Cross-Domain Synthesis:
- Medical ↔ Technical connections
- Regulatory ↔ Market impacts
- Ethical ↔ Implementation constraints
4. Quality Assessment:
- Coverage: All domains addressed
- Depth: Sufficient detail per domain
- Integration: Cross-domain insights
- Confidence: 0.87 achieved
5. Comprehensive Report:
- Executive summary
- Domain-specific sections
- Integrated analysis
- Strategic recommendations
- Visual evidence
Advanced Workflow Patterns
Pattern 1: Iterative Deepening
Round_1:
- Broad search for landscape
- Identify key areas
Round_2:
- Deep dive into key areas
- Extract detailed information
Round_3:
- Fill specific gaps
- Resolve contradictions
Round_4:
- Final validation
- Quality assurance
Pattern 2: Source Triangulation
Primary_Sources:
- Official documentation
- Academic papers
Secondary_Sources:
- Industry reports
- Expert analysis
Tertiary_Sources:
- Community discussions
- User experiences
Synthesis:
- Cross-validate findings
- Identify consensus
- Note disagreements
Pattern 3: Temporal Analysis
Historical_Context:
- Past developments
- Evolution timeline
Current_State:
- Present situation
- Recent changes
Future_Projections:
- Trends analysis
- Expert predictions
Synthesis:
- Development trajectory
- Inflection points
- Future scenarios
Performance Optimization Tips
Query Optimization
- Start with specific terms
- Use domain filters early
- Batch similar searches
- Cache intermediate results
- Reuse successful patterns
Extraction Efficiency
- Assess complexity first
- Use appropriate tool per source
- Parallelize when possible
- Set reasonable timeouts
- Handle errors gracefully
Synthesis Strategy
- Organize findings early
- Identify patterns quickly
- Resolve conflicts systematically
- Build narrative progressively
- Maintain evidence chains
Quality Validation Checklist
Planning Phase
- Clear objectives defined
- Appropriate strategy selected
- Resources estimated correctly
- Success criteria established
Execution Phase
- All planned searches completed
- Extraction methods appropriate
- Multi-hop chains logical
- Confidence scores calculated
Synthesis Phase
- All findings integrated
- Contradictions resolved
- Evidence chains complete
- Narrative coherent
Delivery Phase
- Format appropriate for audience
- Citations complete and accurate
- Visual evidence included
- Confidence levels transparent