SuperClaude/docs/memory/next_actions.md
kazuki nakai 882a0d8356
refactor: PM Agent complete independence from external MCP servers (#439)
* refactor: PM Agent complete independence from external MCP servers

## Summary
Implement graceful degradation to ensure PM Agent operates fully without
any MCP server dependencies. MCP servers now serve as optional enhancements
rather than required components.

## Changes

### Responsibility Separation (NEW)
- **PM Agent**: Development workflow orchestration (PDCA cycle, task management)
- **mindbase**: Memory management (long-term, freshness, error learning)
- **Built-in memory**: Session-internal context (volatile)

### 3-Layer Memory Architecture with Fallbacks
1. **Built-in Memory** [OPTIONAL]: Session context via MCP memory server
2. **mindbase** [OPTIONAL]: Long-term semantic search via airis-mcp-gateway
3. **Local Files** [ALWAYS]: Core functionality in docs/memory/

### Graceful Degradation Implementation
- All MCP operations marked with [ALWAYS] or [OPTIONAL]
- Explicit IF/ELSE fallback logic for every MCP call
- Dual storage: Always write to local files + optionally to mindbase
- Smart lookup: Semantic search (if available) → Text search (always works)

### Key Fallback Strategies

**Session Start**:
- mindbase available: search_conversations() for semantic context
- mindbase unavailable: Grep docs/memory/*.jsonl for text-based lookup

**Error Detection**:
- mindbase available: Semantic search for similar past errors
- mindbase unavailable: Grep docs/mistakes/ + solutions_learned.jsonl

**Knowledge Capture**:
- Always: echo >> docs/memory/patterns_learned.jsonl (persistent)
- Optional: mindbase.store() for semantic search enhancement

## Benefits
-  Zero external dependencies (100% functionality without MCP)
-  Enhanced capabilities when MCPs available (semantic search, freshness)
-  No functionality loss, only reduced search intelligence
-  Transparent degradation (no error messages, automatic fallback)

## Related Research
- Serena MCP investigation: Exposes tools (not resources), memory = markdown files
- mindbase superiority: PostgreSQL + pgvector > Serena memory features
- Best practices alignment: /Users/kazuki/github/airis-mcp-gateway/docs/mcp-best-practices.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: add PR template and pre-commit config

- Add structured PR template with Git workflow checklist
- Add pre-commit hooks for secret detection and Conventional Commits
- Enforce code quality gates (YAML/JSON/Markdown lint, shellcheck)

NOTE: Execute pre-commit inside Docker container to avoid host pollution:
  docker compose exec workspace uv tool install pre-commit
  docker compose exec workspace pre-commit run --all-files

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* docs: update PM Agent context with token efficiency architecture

- Add Layer 0 Bootstrap (150 tokens, 95% reduction)
- Document Intent Classification System (5 complexity levels)
- Add Progressive Loading strategy (5-layer)
- Document mindbase integration incentive (38% savings)
- Update with 2025-10-17 redesign details

* refactor: PM Agent command with progressive loading

- Replace auto-loading with User Request First philosophy
- Add 5-layer progressive context loading
- Implement intent classification system
- Add workflow metrics collection (.jsonl)
- Document graceful degradation strategy

* fix: installer improvements

Update installer logic for better reliability

* docs: add comprehensive development documentation

- Add architecture overview
- Add PM Agent improvements analysis
- Add parallel execution architecture
- Add CLI install improvements
- Add code style guide
- Add project overview
- Add install process analysis

* docs: add research documentation

Add LLM agent token efficiency research and analysis

* docs: add suggested commands reference

* docs: add session logs and testing documentation

- Add session analysis logs
- Add testing documentation

* feat: migrate CLI to typer + rich for modern UX

## What Changed

### New CLI Architecture (typer + rich)
- Created `superclaude/cli/` module with modern typer-based CLI
- Replaced custom UI utilities with rich native features
- Added type-safe command structure with automatic validation

### Commands Implemented
- **install**: Interactive installation with rich UI (progress, panels)
- **doctor**: System diagnostics with rich table output
- **config**: API key management with format validation

### Technical Improvements
- Dependencies: Added typer>=0.9.0, rich>=13.0.0, click>=8.0.0
- Entry Point: Updated pyproject.toml to use `superclaude.cli.app:cli_main`
- Tests: Added comprehensive smoke tests (11 passed)

### User Experience Enhancements
- Rich formatted help messages with panels and tables
- Automatic input validation with retry loops
- Clear error messages with actionable suggestions
- Non-interactive mode support for CI/CD

## Testing

```bash
uv run superclaude --help     # ✓ Works
uv run superclaude doctor     # ✓ Rich table output
uv run superclaude config show # ✓ API key management
pytest tests/test_cli_smoke.py # ✓ 11 passed, 1 skipped
```

## Migration Path

-  P0: Foundation complete (typer + rich + smoke tests)
- 🔜 P1: Pydantic validation models (next sprint)
- 🔜 P2: Enhanced error messages (next sprint)
- 🔜 P3: API key retry loops (next sprint)

## Performance Impact

- **Code Reduction**: Prepared for -300 lines (custom UI → rich)
- **Type Safety**: Automatic validation from type hints
- **Maintainability**: Framework primitives vs custom code

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate documentation directories

Merged claudedocs/ into docs/research/ for consistent documentation structure.

Changes:
- Moved all claudedocs/*.md files to docs/research/
- Updated all path references in documentation (EN/KR)
- Updated RULES.md and research.md command templates
- Removed claudedocs/ directory
- Removed ClaudeDocs/ from .gitignore

Benefits:
- Single source of truth for all research reports
- PEP8-compliant lowercase directory naming
- Clearer documentation organization
- Prevents future claudedocs/ directory creation

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* perf: reduce /sc:pm command output from 1652 to 15 lines

- Remove 1637 lines of documentation from command file
- Keep only minimal bootstrap message
- 99% token reduction on command execution
- Detailed specs remain in superclaude/agents/pm-agent.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* perf: split PM Agent into execution workflows and guide

- Reduce pm-agent.md from 735 to 429 lines (42% reduction)
- Move philosophy/examples to docs/agents/pm-agent-guide.md
- Execution workflows (PDCA, file ops) stay in pm-agent.md
- Guide (examples, quality standards) read once when needed

Token savings:
- Agent loading: ~6K → ~3.5K tokens (42% reduction)
- Total with pm.md: 71% overall reduction

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate PM Agent optimization and pending changes

PM Agent optimization (already committed separately):
- superclaude/commands/pm.md: 1652→14 lines
- superclaude/agents/pm-agent.md: 735→429 lines
- docs/agents/pm-agent-guide.md: new guide file

Other pending changes:
- setup: framework_docs, mcp, logger, remove ui.py
- superclaude: __main__, cli/app, cli/commands/install
- tests: test_ui updates
- scripts: workflow metrics analysis tools
- docs/memory: session state updates

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: simplify MCP installer to unified gateway with legacy mode

## Changes

### MCP Component (setup/components/mcp.py)
- Simplified to single airis-mcp-gateway by default
- Added legacy mode for individual official servers (sequential-thinking, context7, magic, playwright)
- Dynamic prerequisites based on mode:
  - Default: uv + claude CLI only
  - Legacy: node (18+) + npm + claude CLI
- Removed redundant server definitions

### CLI Integration
- Added --legacy flag to setup/cli/commands/install.py
- Added --legacy flag to superclaude/cli/commands/install.py
- Config passes legacy_mode to component installer

## Benefits
-  Simpler: 1 gateway vs 9+ individual servers
-  Lighter: No Node.js/npm required (default mode)
-  Unified: All tools in one gateway (sequential-thinking, context7, magic, playwright, serena, morphllm, tavily, chrome-devtools, git, puppeteer)
-  Flexible: --legacy flag for official servers if needed

## Usage
```bash
superclaude install              # Default: airis-mcp-gateway (推奨)
superclaude install --legacy     # Legacy: individual official servers
```

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: rename CoreComponent to FrameworkDocsComponent and add PM token tracking

## Changes

### Component Renaming (setup/components/)
- Renamed CoreComponent → FrameworkDocsComponent for clarity
- Updated all imports in __init__.py, agents.py, commands.py, mcp_docs.py, modes.py
- Better reflects the actual purpose (framework documentation files)

### PM Agent Enhancement (superclaude/commands/pm.md)
- Added token usage tracking instructions
- PM Agent now reports:
  1. Current token usage from system warnings
  2. Percentage used (e.g., "27% used" for 54K/200K)
  3. Status zone: 🟢 <75% | 🟡 75-85% | 🔴 >85%
- Helps prevent token exhaustion during long sessions

### UI Utilities (setup/utils/ui.py)
- Added new UI utility module for installer
- Provides consistent user interface components

## Benefits
-  Clearer component naming (FrameworkDocs vs Core)
-  PM Agent token awareness for efficiency
-  Better visual feedback with status zones

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor(pm-agent): minimize output verbosity (471→284 lines, 40% reduction)

**Problem**: PM Agent generated excessive output with redundant explanations
- "System Status Report" with decorative formatting
- Repeated "Common Tasks" lists user already knows
- Verbose session start/end protocols
- Duplicate file operations documentation

**Solution**: Compress without losing functionality
- Session Start: Reduced to symbol-only status (🟢 branch | nM nD | token%)
- Session End: Compressed to essential actions only
- File Operations: Consolidated from 2 sections to 1 line reference
- Self-Improvement: 5 phases → 1 unified workflow
- Output Rules: Explicit constraints to prevent Claude over-explanation

**Quality Preservation**:
-  All core functions retained (PDCA, memory, patterns, mistakes)
-  PARALLEL Read/Write preserved (performance critical)
-  Workflow unchanged (session lifecycle intact)
-  Added output constraints (prevents verbose generation)

**Reduction Method**:
- Deleted: Explanatory text, examples, redundant sections
- Retained: Action definitions, file paths, core workflows
- Added: Explicit output constraints to enforce minimalism

**Token Impact**: 40% reduction in agent documentation size
**Before**: Verbose multi-section report with task lists
**After**: Single line status: 🟢 integration | 15M 17D | 36%

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* refactor: consolidate MCP integration to unified gateway

**Changes**:
- Remove individual MCP server docs (superclaude/mcp/*.md)
- Remove MCP server configs (superclaude/mcp/configs/*.json)
- Delete MCP docs component (setup/components/mcp_docs.py)
- Simplify installer (setup/core/installer.py)
- Update components for unified gateway approach

**Rationale**:
- Unified gateway (airis-mcp-gateway) provides all MCP servers
- Individual docs/configs no longer needed (managed centrally)
- Reduces maintenance burden and file count
- Simplifies installation process

**Files Removed**: 17 MCP files (docs + configs)
**Installer Changes**: Removed legacy MCP installation logic

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* chore: update version and component metadata

- Bump version (pyproject.toml, setup/__init__.py)
- Update CLAUDE.md import service references
- Reflect component structure changes

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local>
Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 05:43:06 +05:30

6.9 KiB

Next Actions

Updated: 2025-10-17 Priority: Testing & Validation → Metrics Collection


🎯 Immediate Actions (今週)

1. pytest環境セットアップ (High Priority)

Purpose: テストスイート実行環境を構築

Dependencies: なし Owner: PM Agent + DevOps

Steps:

# Option 1: Docker環境でセットアップ (推奨)
docker compose exec workspace sh
pip install pytest pytest-cov scipy

# Option 2: 仮想環境でセットアップ
python -m venv .venv
source .venv/bin/activate
pip install pytest pytest-cov scipy

Success Criteria:

  • pytest実行可能
  • scipy (t-test) 動作確認
  • pytest-cov (カバレッジ) 動作確認

Estimated Time: 30分


2. テスト実行 & 検証 (High Priority)

Purpose: 品質保証層の実動作確認

Dependencies: pytest環境セットアップ完了 Owner: Quality Engineer + PM Agent

Commands:

# 全テスト実行
pytest tests/pm_agent/ -v

# マーカー別実行
pytest tests/pm_agent/ -m unit           # Unit tests
pytest tests/pm_agent/ -m integration    # Integration tests
pytest tests/pm_agent/ -m hallucination  # Hallucination detection
pytest tests/pm_agent/ -m performance    # Performance tests

# カバレッジレポート
pytest tests/pm_agent/ --cov=. --cov-report=html

Expected Results:

Hallucination Detection: ≥94%
Token Budget Compliance: 100%
Confidence Accuracy: >85%
Error Recurrence: <10%
All Tests: PASS

Estimated Time: 1時間


🚀 Short-term Actions (次スプリント)

3. メトリクス収集の実運用開始 (Week 2-3)

Purpose: 実際のワークフローでデータ蓄積

Steps:

  1. 初回データ収集:

    • 通常タスク実行時に自動記録
    • 1週間分のデータ蓄積 (目標: 20-30タスク)
  2. 初回週次分析:

    python scripts/analyze_workflow_metrics.py --period week
    
  3. 結果レビュー:

    • タスクタイプ別トークン使用量
    • 成功率確認
    • 非効率パターン特定

Success Criteria:

  • 20+タスクのメトリクス記録
  • 週次レポート生成成功
  • トークン削減率が期待値内 (60%平均)

Estimated Time: 1週間 (自動記録)


4. A/B Testing Framework起動 (Week 3-4)

Purpose: 実験的ワークフローの検証

Steps:

  1. Experimental Variant設計:

    • 候補: experimental_eager_layer3 (Medium tasksで常にLayer 3)
    • 仮説: より多くのコンテキストで精度向上
  2. 80/20配分実装:

    Allocation:
      progressive_v3_layer2: 80%  # Current best
      experimental_eager_layer3: 20%  # New variant
    
  3. 20試行後の統計分析:

    python scripts/ab_test_workflows.py \
      --variant-a progressive_v3_layer2 \
      --variant-b experimental_eager_layer3 \
      --metric tokens_used
    
  4. 判定:

    • p < 0.05 → 統計的有意
    • 成功率 ≥95% → 品質維持
    • → 勝者を標準ワークフローに昇格

Success Criteria:

  • 各variant 20+試行
  • 統計的有意性確認 (p < 0.05)
  • 改善確認 OR 現状維持判定

Estimated Time: 2週間


🔮 Long-term Actions (Future Sprints)

5. Advanced Features (Month 2-3)

Multi-agent Confidence Aggregation:

  • 複数sub-agentの確信度を統合
  • 投票メカニズム (majority vote)
  • Weight付き平均 (expertise-based)

Predictive Error Detection:

  • 過去エラーパターン学習
  • 類似コンテキスト検出
  • 事前警告システム

Adaptive Budget Allocation:

  • タスク特性に応じた動的予算
  • ML-based prediction (過去データから学習)
  • Real-time adjustment

Cross-session Learning Patterns:

  • セッション跨ぎパターン認識
  • Long-term trend analysis
  • Seasonal patterns detection

6. Integration Enhancements (Month 3-4)

mindbase Vector Search Optimization:

  • Semantic similarity threshold tuning
  • Query embedding optimization
  • Cache hit rate improvement

Reflexion Pattern Refinement:

  • Error categorization improvement
  • Solution reusability scoring
  • Automatic pattern extraction

Evidence Requirement Automation:

  • Auto-evidence collection
  • Automated test execution
  • Result parsing and validation

Continuous Learning Loop:

  • Auto-pattern formalization
  • Self-improving workflows
  • Knowledge base evolution

📊 Success Metrics

Phase 1: Testing (今週)

Goal: 品質保証層確立
Metrics:
  - All tests pass: 100%
  - Hallucination detection: ≥94%
  - Token efficiency: 60% avg
  - Error recurrence: <10%

Phase 2: Metrics Collection (Week 2-3)

Goal: データ蓄積開始
Metrics:
  - Tasks recorded: ≥20
  - Data quality: Clean (no null errors)
  - Weekly report: Generated
  - Insights: ≥3 actionable findings

Phase 3: A/B Testing (Week 3-4)

Goal: 科学的ワークフロー改善
Metrics:
  - Trials per variant: ≥20
  - Statistical significance: p < 0.05
  - Winner identified: Yes
  - Implementation: Promoted or deprecated

🛠️ Tools & Scripts Ready

Testing:

  • tests/pm_agent/ (2,760行)
  • pytest.ini (configuration)
  • conftest.py (fixtures)

Metrics:

  • docs/memory/workflow_metrics.jsonl (initialized)
  • docs/memory/WORKFLOW_METRICS_SCHEMA.md (spec)

Analysis:

  • scripts/analyze_workflow_metrics.py (週次分析)
  • scripts/ab_test_workflows.py (A/Bテスト)

📅 Timeline

Week 1 (Oct 17-23):
  - Day 1-2: pytest環境セットアップ
  - Day 3-4: テスト実行 & 検証
  - Day 5-7: 問題修正 (if any)

Week 2-3 (Oct 24 - Nov 6):
  - Continuous: メトリクス自動記録
  - Week end: 初回週次分析

Week 3-4 (Nov 7 - Nov 20):
  - Start: Experimental variant起動
  - Continuous: 80/20 A/B testing
  - End: 統計分析 & 判定

Month 2-3 (Dec - Jan):
  - Advanced features implementation
  - Integration enhancements

⚠️ Blockers & Risks

Technical Blockers:

  • pytest未インストール → Docker環境で解決
  • scipy依存 → pip install scipy
  • なし(その他)

Risks:

  • テスト失敗 → 境界条件調整が必要
  • メトリクス収集不足 → より多くのタスク実行
  • A/B testing判定困難 → サンプルサイズ増加

Mitigation:

  • テスト設計時に境界条件考慮済み
  • メトリクススキーマは柔軟
  • A/Bテストは統計的有意性で自動判定

🤝 Dependencies

External Dependencies:

  • Python packages: pytest, scipy, pytest-cov
  • Docker環境: (Optional but recommended)

Internal Dependencies:

  • pm.md specification (Line 870-1016)
  • Workflow metrics schema
  • Analysis scripts

None blocking: すべて準備完了


Next Session Priority: pytest環境セットアップ → テスト実行

Status: Ready to proceed