mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-17 09:46:06 +00:00
1729 lines
60 KiB
Markdown
1729 lines
60 KiB
Markdown
|
|
# SuperClaude Technical Architecture Guide 🏗️
|
||
|
|
|
||
|
|
## Overview
|
||
|
|
|
||
|
|
This technical architecture guide documents SuperClaude Framework's V4 orchestrator system - a sophisticated meta-programming framework that transforms Claude Code into a structured development platform through behavioral instruction injection and intelligent component orchestration.
|
||
|
|
|
||
|
|
**Target Audience**: Framework developers, system architects, contributors, and advanced users requiring deep technical understanding of SuperClaude's internal architecture and extension patterns.
|
||
|
|
|
||
|
|
**Architecture Philosophy**: SuperClaude operates as a **meta-framework** that enhances Claude Code through configuration-driven behavioral programming, intelligent task routing, and dynamic tool coordination rather than replacing core functionality.
|
||
|
|
|
||
|
|
## Table of Contents
|
||
|
|
|
||
|
|
1. [Architecture Overview](#architecture-overview) - Multi-layered orchestration pattern
|
||
|
|
2. [Detection Engine](#detection-engine) - Intelligent task classification and context analysis
|
||
|
|
3. [Routing Intelligence](#routing-intelligence) - Agent selection and resource allocation
|
||
|
|
4. [Quality Framework](#quality-framework) - Validation systems and quality gates
|
||
|
|
5. [Performance System](#performance-system) - Optimization and resource management
|
||
|
|
6. [Agent Coordination](#agent-coordination) - 13-agent collaboration architecture
|
||
|
|
7. [MCP Integration](#mcp-integration) - External tool coordination protocols
|
||
|
|
8. [Configuration](#configuration) - Component management and system customization
|
||
|
|
9. [Extensibility](#extensibility) - Plugin architecture and extension patterns
|
||
|
|
10. [Technical Reference](#technical-reference) - API specifications and implementation details
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
## Architecture Overview
|
||
|
|
|
||
|
|
### System Design Principles
|
||
|
|
|
||
|
|
**Meta-Framework Architecture**: SuperClaude enhances Claude Code through instruction injection rather than code modification, maintaining compatibility while adding sophisticated orchestration capabilities.
|
||
|
|
|
||
|
|
**Configuration-Driven Behavior**: Behavioral programming through structured `.md` files enables AI behavior modification without code changes, providing unprecedented flexibility in AI system customization.
|
||
|
|
|
||
|
|
**Intelligent Orchestration**: Dynamic coordination of specialized agents, MCP servers, and behavioral modes based on context analysis and task complexity detection.
|
||
|
|
|
||
|
|
### Core Components
|
||
|
|
|
||
|
|
```
|
||
|
|
┌─ User Interface Layer ──────────────────────────────┐
|
||
|
|
│ • Slash Commands (/sc:*) │
|
||
|
|
│ • Natural Language Processing │
|
||
|
|
│ • Flag-based Modifiers │
|
||
|
|
└─────────────────────────────────────────────────────┘
|
||
|
|
│
|
||
|
|
┌─ Detection & Routing Engine ────────────────────────┐
|
||
|
|
│ • Context Analysis │
|
||
|
|
│ • Task Classification │
|
||
|
|
│ • Complexity Scoring │
|
||
|
|
│ • Resource Assessment │
|
||
|
|
└─────────────────────────────────────────────────────┘
|
||
|
|
│
|
||
|
|
┌─ Orchestration Layer ───────────────────────────────┐
|
||
|
|
│ • Agent Selection & Coordination │
|
||
|
|
│ • MCP Server Activation │
|
||
|
|
│ • Behavioral Mode Management │
|
||
|
|
│ • Tool Integration │
|
||
|
|
└─────────────────────────────────────────────────────┘
|
||
|
|
│
|
||
|
|
┌─ Execution Framework ───────────────────────────────┐
|
||
|
|
│ • Task Management & Delegation │
|
||
|
|
│ • Quality Gates & Validation │
|
||
|
|
│ • Progress Tracking │
|
||
|
|
│ • Session Management │
|
||
|
|
└─────────────────────────────────────────────────────┘
|
||
|
|
│
|
||
|
|
┌─ Foundation Layer ──────────────────────────────────┐
|
||
|
|
│ • Claude Code Integration │
|
||
|
|
│ • Configuration Management │
|
||
|
|
│ • Component System │
|
||
|
|
│ • Memory & Persistence │
|
||
|
|
└─────────────────────────────────────────────────────┘
|
||
|
|
```
|
||
|
|
|
||
|
|
### Multi-Layered Orchestration Pattern
|
||
|
|
|
||
|
|
**Layer 1: Detection & Analysis**
|
||
|
|
- Intent parsing and context analysis
|
||
|
|
- Task complexity assessment and resource evaluation
|
||
|
|
- Pattern recognition and trigger detection
|
||
|
|
|
||
|
|
**Layer 2: Planning & Routing**
|
||
|
|
- Agent selection based on domain expertise
|
||
|
|
- MCP server activation for enhanced capabilities
|
||
|
|
- Behavioral mode selection for optimal communication
|
||
|
|
- Resource allocation and load balancing
|
||
|
|
|
||
|
|
**Layer 3: Coordination & Execution**
|
||
|
|
- Multi-agent collaboration and communication
|
||
|
|
- Tool integration and workflow orchestration
|
||
|
|
- Progress monitoring and quality validation
|
||
|
|
- Session persistence and context management
|
||
|
|
|
||
|
|
**Layer 4: Quality & Optimization**
|
||
|
|
- Continuous quality assessment and improvement
|
||
|
|
- Performance monitoring and optimization
|
||
|
|
- Learning and adaptation based on outcomes
|
||
|
|
- Feedback integration and system evolution
|
||
|
|
|
||
|
|
## Detection Engine
|
||
|
|
|
||
|
|
### Intelligent Task Classification
|
||
|
|
|
||
|
|
**Context Analysis Pipeline:**
|
||
|
|
```python
|
||
|
|
class TaskDetectionEngine:
|
||
|
|
def analyze_request(self, user_input, context):
|
||
|
|
analysis = {
|
||
|
|
'intent': self._extract_intent(user_input),
|
||
|
|
'complexity': self._assess_complexity(context),
|
||
|
|
'domain': self._identify_domain(user_input, context),
|
||
|
|
'scope': self._determine_scope(context),
|
||
|
|
'resources': self._evaluate_resources(context)
|
||
|
|
}
|
||
|
|
return self._classify_task(analysis)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Pattern Recognition System:**
|
||
|
|
|
||
|
|
**Keyword-Based Detection:**
|
||
|
|
```python
|
||
|
|
TRIGGER_PATTERNS = {
|
||
|
|
'brainstorming': ['brainstorm', 'explore', 'maybe', 'not sure', 'thinking about'],
|
||
|
|
'security': ['auth', 'security', 'vulnerability', 'encryption', 'compliance'],
|
||
|
|
'ui_generation': ['component', 'UI', 'interface', 'dashboard', 'responsive'],
|
||
|
|
'performance': ['slow', 'optimization', 'bottleneck', 'latency', 'performance'],
|
||
|
|
'architecture': ['design', 'architecture', 'microservices', 'scalability']
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**File Type Analysis:**
|
||
|
|
```python
|
||
|
|
FILE_TYPE_ROUTING = {
|
||
|
|
'.jsx': ['frontend-architect', 'magic-mcp'],
|
||
|
|
'.py': ['python-expert', 'backend-architect'],
|
||
|
|
'.ts': ['frontend-architect', 'backend-architect'],
|
||
|
|
'.sql': ['backend-architect', 'performance-engineer'],
|
||
|
|
'.md': ['technical-writer', 'documentation-specialist']
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Complexity Scoring Algorithm:**
|
||
|
|
```python
|
||
|
|
def calculate_complexity_score(context):
|
||
|
|
score = 0
|
||
|
|
|
||
|
|
# File scope analysis
|
||
|
|
if context.file_count > 10: score += 0.3
|
||
|
|
if context.directory_count > 3: score += 0.2
|
||
|
|
|
||
|
|
# Code analysis
|
||
|
|
if context.lines_of_code > 1000: score += 0.2
|
||
|
|
if context.dependencies > 5: score += 0.1
|
||
|
|
|
||
|
|
# Task characteristics
|
||
|
|
if context.involves_multiple_domains: score += 0.3
|
||
|
|
if context.requires_coordination: score += 0.2
|
||
|
|
|
||
|
|
return min(score, 1.0) # Cap at 1.0
|
||
|
|
```
|
||
|
|
|
||
|
|
### Auto-Activation Mechanisms
|
||
|
|
|
||
|
|
**Behavioral Mode Triggers:**
|
||
|
|
```python
|
||
|
|
class ModeDetection:
|
||
|
|
def detect_mode(self, task_analysis):
|
||
|
|
modes = []
|
||
|
|
|
||
|
|
if task_analysis.complexity > 0.7:
|
||
|
|
modes.append('task-management')
|
||
|
|
|
||
|
|
if task_analysis.uncertainty > 0.6:
|
||
|
|
modes.append('brainstorming')
|
||
|
|
|
||
|
|
if task_analysis.requires_tools > 3:
|
||
|
|
modes.append('orchestration')
|
||
|
|
|
||
|
|
if task_analysis.resource_pressure > 0.75:
|
||
|
|
modes.append('token-efficiency')
|
||
|
|
|
||
|
|
return modes
|
||
|
|
```
|
||
|
|
|
||
|
|
**Agent Selection Logic:**
|
||
|
|
```python
|
||
|
|
class AgentSelector:
|
||
|
|
def select_agents(self, task_analysis):
|
||
|
|
agents = []
|
||
|
|
|
||
|
|
# Domain-based selection
|
||
|
|
if 'security' in task_analysis.keywords:
|
||
|
|
agents.append('security-engineer')
|
||
|
|
|
||
|
|
if task_analysis.involves_ui:
|
||
|
|
agents.append('frontend-architect')
|
||
|
|
|
||
|
|
# Complexity-based selection
|
||
|
|
if task_analysis.complexity > 0.8:
|
||
|
|
agents.append('system-architect')
|
||
|
|
|
||
|
|
# Quality requirements
|
||
|
|
if task_analysis.quality_critical:
|
||
|
|
agents.append('quality-engineer')
|
||
|
|
|
||
|
|
return agents
|
||
|
|
```
|
||
|
|
|
||
|
|
**MCP Server Activation:**
|
||
|
|
```python
|
||
|
|
class MCPActivation:
|
||
|
|
def determine_mcp_servers(self, task_analysis):
|
||
|
|
servers = []
|
||
|
|
|
||
|
|
# Documentation needs
|
||
|
|
if task_analysis.needs_documentation:
|
||
|
|
servers.append('context7')
|
||
|
|
|
||
|
|
# Complex reasoning
|
||
|
|
if task_analysis.complexity > 0.6:
|
||
|
|
servers.append('sequential')
|
||
|
|
|
||
|
|
# UI development
|
||
|
|
if task_analysis.domain == 'frontend':
|
||
|
|
servers.append('magic')
|
||
|
|
|
||
|
|
# Browser testing
|
||
|
|
if 'testing' in task_analysis.keywords:
|
||
|
|
servers.append('playwright')
|
||
|
|
|
||
|
|
return servers
|
||
|
|
```
|
||
|
|
|
||
|
|
## Routing Intelligence
|
||
|
|
|
||
|
|
### Dynamic Resource Allocation
|
||
|
|
|
||
|
|
**Orchestration Decision Matrix:**
|
||
|
|
```python
|
||
|
|
class ResourceOrchestrator:
|
||
|
|
def allocate_resources(self, task_analysis, available_resources):
|
||
|
|
allocation = {
|
||
|
|
'agents': self._select_optimal_agents(task_analysis),
|
||
|
|
'mcp_servers': self._choose_mcp_servers(task_analysis),
|
||
|
|
'behavioral_modes': self._activate_modes(task_analysis),
|
||
|
|
'resource_limits': self._calculate_limits(available_resources)
|
||
|
|
}
|
||
|
|
return self._optimize_allocation(allocation)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Load Balancing Strategy:**
|
||
|
|
```python
|
||
|
|
class LoadBalancer:
|
||
|
|
def balance_workload(self, tasks, resources):
|
||
|
|
# Resource capacity assessment
|
||
|
|
capacity = self._assess_resource_capacity()
|
||
|
|
|
||
|
|
# Task priority and dependency analysis
|
||
|
|
prioritized_tasks = self._prioritize_tasks(tasks)
|
||
|
|
|
||
|
|
# Optimal distribution algorithm
|
||
|
|
distribution = {}
|
||
|
|
for task in prioritized_tasks:
|
||
|
|
best_resource = self._find_best_resource(task, capacity)
|
||
|
|
distribution[task.id] = best_resource
|
||
|
|
capacity[best_resource] -= task.resource_requirement
|
||
|
|
|
||
|
|
return distribution
|
||
|
|
```
|
||
|
|
|
||
|
|
### Agent Coordination Protocols
|
||
|
|
|
||
|
|
**Multi-Agent Communication:**
|
||
|
|
```python
|
||
|
|
class AgentCoordinator:
|
||
|
|
def coordinate_agents(self, selected_agents, task_context):
|
||
|
|
coordination_plan = {
|
||
|
|
'primary_agent': self._select_primary(selected_agents, task_context),
|
||
|
|
'supporting_agents': self._organize_support(selected_agents),
|
||
|
|
'communication_flow': self._design_flow(selected_agents),
|
||
|
|
'decision_hierarchy': self._establish_hierarchy(selected_agents)
|
||
|
|
}
|
||
|
|
return coordination_plan
|
||
|
|
```
|
||
|
|
|
||
|
|
**Specialization Routing:**
|
||
|
|
```python
|
||
|
|
AGENT_SPECIALIZATIONS = {
|
||
|
|
'system-architect': {
|
||
|
|
'triggers': ['architecture', 'design', 'scalability'],
|
||
|
|
'capabilities': ['system_design', 'technology_selection'],
|
||
|
|
'coordination_priority': 'high',
|
||
|
|
'domain_expertise': 0.9
|
||
|
|
},
|
||
|
|
'security-engineer': {
|
||
|
|
'triggers': ['security', 'auth', 'vulnerability'],
|
||
|
|
'capabilities': ['threat_modeling', 'security_review'],
|
||
|
|
'coordination_priority': 'critical',
|
||
|
|
'domain_expertise': 0.95
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
### Tool Integration Optimization
|
||
|
|
|
||
|
|
**MCP Server Selection Algorithm:**
|
||
|
|
```python
|
||
|
|
class MCPSelector:
|
||
|
|
def optimize_server_selection(self, task_requirements):
|
||
|
|
# Capability mapping
|
||
|
|
server_capabilities = self._map_capabilities()
|
||
|
|
|
||
|
|
# Performance metrics
|
||
|
|
server_performance = self._get_performance_metrics()
|
||
|
|
|
||
|
|
# Cost-benefit analysis
|
||
|
|
optimal_set = []
|
||
|
|
for requirement in task_requirements:
|
||
|
|
candidates = self._find_capable_servers(requirement)
|
||
|
|
best_server = self._select_best(candidates, server_performance)
|
||
|
|
optimal_set.append(best_server)
|
||
|
|
|
||
|
|
return self._deduplicate_and_optimize(optimal_set)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Parallel Execution Planning:**
|
||
|
|
```python
|
||
|
|
class ParallelPlanner:
|
||
|
|
def plan_parallel_execution(self, tasks, dependencies):
|
||
|
|
# Dependency graph analysis
|
||
|
|
dependency_graph = self._build_dependency_graph(tasks, dependencies)
|
||
|
|
|
||
|
|
# Parallel execution opportunities
|
||
|
|
parallel_groups = self._identify_parallel_groups(dependency_graph)
|
||
|
|
|
||
|
|
# Resource allocation for parallel tasks
|
||
|
|
execution_plan = []
|
||
|
|
for group in parallel_groups:
|
||
|
|
resources = self._allocate_group_resources(group)
|
||
|
|
execution_plan.append({
|
||
|
|
'tasks': group,
|
||
|
|
'resources': resources,
|
||
|
|
'execution_mode': 'parallel'
|
||
|
|
})
|
||
|
|
|
||
|
|
return execution_plan
|
||
|
|
```
|
||
|
|
|
||
|
|
### Performance Optimization
|
||
|
|
|
||
|
|
**Resource Constraint Handling:**
|
||
|
|
```python
|
||
|
|
class ConstraintManager:
|
||
|
|
def handle_constraints(self, resource_request, available_resources):
|
||
|
|
if self._exceeds_capacity(resource_request, available_resources):
|
||
|
|
# Adaptive scaling strategies
|
||
|
|
strategies = [
|
||
|
|
self._reduce_scope,
|
||
|
|
self._enable_compression,
|
||
|
|
self._defer_non_critical,
|
||
|
|
self._optimize_tool_selection
|
||
|
|
]
|
||
|
|
|
||
|
|
for strategy in strategies:
|
||
|
|
adjusted_request = strategy(resource_request)
|
||
|
|
if self._fits_capacity(adjusted_request, available_resources):
|
||
|
|
return adjusted_request
|
||
|
|
|
||
|
|
return resource_request
|
||
|
|
```
|
||
|
|
|
||
|
|
**Adaptive Performance Tuning:**
|
||
|
|
```python
|
||
|
|
class PerformanceTuner:
|
||
|
|
def tune_performance(self, execution_metrics):
|
||
|
|
# Performance analysis
|
||
|
|
bottlenecks = self._identify_bottlenecks(execution_metrics)
|
||
|
|
|
||
|
|
# Optimization recommendations
|
||
|
|
optimizations = []
|
||
|
|
for bottleneck in bottlenecks:
|
||
|
|
if bottleneck.type == 'memory':
|
||
|
|
optimizations.append(self._suggest_memory_optimization())
|
||
|
|
elif bottleneck.type == 'cpu':
|
||
|
|
optimizations.append(self._suggest_cpu_optimization())
|
||
|
|
elif bottleneck.type == 'io':
|
||
|
|
optimizations.append(self._suggest_io_optimization())
|
||
|
|
|
||
|
|
return optimizations
|
||
|
|
```
|
||
|
|
|
||
|
|
## Quality Framework
|
||
|
|
|
||
|
|
### Validation Systems
|
||
|
|
|
||
|
|
**Multi-Layer Quality Gates:**
|
||
|
|
```python
|
||
|
|
class QualityGateSystem:
|
||
|
|
def __init__(self):
|
||
|
|
self.gates = [
|
||
|
|
PreExecutionGate(), # Input validation and risk assessment
|
||
|
|
ExecutionGate(), # Real-time quality monitoring
|
||
|
|
PostExecutionGate(), # Output validation and completeness
|
||
|
|
IntegrationGate() # System integration validation
|
||
|
|
]
|
||
|
|
|
||
|
|
def validate(self, task, context, output):
|
||
|
|
for gate in self.gates:
|
||
|
|
result = gate.evaluate(task, context, output)
|
||
|
|
if not result.passes:
|
||
|
|
return self._handle_quality_failure(result, gate)
|
||
|
|
return QualityResult.PASSED
|
||
|
|
```
|
||
|
|
|
||
|
|
**Risk Assessment Engine:**
|
||
|
|
```python
|
||
|
|
class RiskAssessment:
|
||
|
|
def assess_risk(self, task_context):
|
||
|
|
risk_factors = {
|
||
|
|
'complexity': self._assess_complexity_risk(task_context),
|
||
|
|
'scope': self._assess_scope_risk(task_context),
|
||
|
|
'resources': self._assess_resource_risk(task_context),
|
||
|
|
'dependencies': self._assess_dependency_risk(task_context),
|
||
|
|
'criticality': self._assess_criticality_risk(task_context)
|
||
|
|
}
|
||
|
|
|
||
|
|
overall_risk = self._calculate_weighted_risk(risk_factors)
|
||
|
|
return RiskProfile(overall_risk, risk_factors)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Quality Metrics
|
||
|
|
|
||
|
|
**Comprehensive Quality Measurement:**
|
||
|
|
```python
|
||
|
|
class QualityMetrics:
|
||
|
|
def measure_quality(self, execution_result):
|
||
|
|
metrics = {
|
||
|
|
'correctness': self._measure_correctness(execution_result),
|
||
|
|
'completeness': self._measure_completeness(execution_result),
|
||
|
|
'performance': self._measure_performance(execution_result),
|
||
|
|
'maintainability': self._measure_maintainability(execution_result),
|
||
|
|
'security': self._measure_security(execution_result),
|
||
|
|
'usability': self._measure_usability(execution_result)
|
||
|
|
}
|
||
|
|
|
||
|
|
return QualityScore(
|
||
|
|
overall=self._calculate_overall_score(metrics),
|
||
|
|
detailed=metrics
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Continuous Quality Monitoring:**
|
||
|
|
```python
|
||
|
|
class QualityMonitor:
|
||
|
|
def monitor_execution(self, task_execution):
|
||
|
|
quality_checks = [
|
||
|
|
self._check_progress_quality(),
|
||
|
|
self._check_resource_utilization(),
|
||
|
|
self._check_error_rates(),
|
||
|
|
self._check_performance_degradation(),
|
||
|
|
self._check_output_quality()
|
||
|
|
]
|
||
|
|
|
||
|
|
for check in quality_checks:
|
||
|
|
if check.indicates_quality_issue():
|
||
|
|
self._trigger_corrective_action(check)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Validation Criteria
|
||
|
|
|
||
|
|
**Domain-Specific Validation:**
|
||
|
|
```python
|
||
|
|
VALIDATION_CRITERIA = {
|
||
|
|
'security': {
|
||
|
|
'required_checks': ['input_sanitization', 'authorization', 'encryption'],
|
||
|
|
'quality_threshold': 0.95,
|
||
|
|
'critical_failures': ['security_vulnerabilities', 'data_exposure']
|
||
|
|
},
|
||
|
|
'performance': {
|
||
|
|
'required_metrics': ['response_time', 'memory_usage', 'cpu_utilization'],
|
||
|
|
'quality_threshold': 0.85,
|
||
|
|
'performance_targets': {'response_time': '<2s', 'memory': '<1GB'}
|
||
|
|
},
|
||
|
|
'frontend': {
|
||
|
|
'required_checks': ['accessibility', 'responsiveness', 'browser_compatibility'],
|
||
|
|
'quality_threshold': 0.90,
|
||
|
|
'accessibility_compliance': 'WCAG_2.1_AA'
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Testing Framework Integration:**
|
||
|
|
```python
|
||
|
|
class TestingFramework:
|
||
|
|
def integrate_testing(self, task_result):
|
||
|
|
test_suite = self._generate_test_suite(task_result)
|
||
|
|
|
||
|
|
# Automated testing
|
||
|
|
unit_results = self._run_unit_tests(test_suite)
|
||
|
|
integration_results = self._run_integration_tests(test_suite)
|
||
|
|
|
||
|
|
# Quality validation
|
||
|
|
if task_result.domain == 'frontend':
|
||
|
|
ui_results = self._run_ui_tests(test_suite)
|
||
|
|
accessibility_results = self._run_accessibility_tests(test_suite)
|
||
|
|
|
||
|
|
return TestResults(unit_results, integration_results, ui_results)
|
||
|
|
```
|
||
|
|
|
||
|
|
## Performance System
|
||
|
|
|
||
|
|
### Resource Management
|
||
|
|
|
||
|
|
**Dynamic Resource Allocation:**
|
||
|
|
```python
|
||
|
|
class ResourceManager:
|
||
|
|
def __init__(self):
|
||
|
|
self.resource_pools = {
|
||
|
|
'memory': MemoryPool(capacity='8GB'),
|
||
|
|
'cpu': CPUPool(cores=8),
|
||
|
|
'mcp_connections': MCPPool(max_connections=6),
|
||
|
|
'token_budget': TokenPool(limit=128000)
|
||
|
|
}
|
||
|
|
|
||
|
|
def allocate_resources(self, task_requirements):
|
||
|
|
allocation = {}
|
||
|
|
for resource_type, requirement in task_requirements.items():
|
||
|
|
pool = self.resource_pools[resource_type]
|
||
|
|
allocation[resource_type] = pool.allocate(requirement)
|
||
|
|
|
||
|
|
return ResourceAllocation(allocation)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Performance Monitoring:**
|
||
|
|
```python
|
||
|
|
class PerformanceMonitor:
|
||
|
|
def monitor_system_performance(self):
|
||
|
|
metrics = {
|
||
|
|
'response_time': self._measure_response_time(),
|
||
|
|
'throughput': self._measure_throughput(),
|
||
|
|
'resource_utilization': self._measure_resource_usage(),
|
||
|
|
'error_rate': self._measure_error_rate(),
|
||
|
|
'mcp_performance': self._measure_mcp_performance()
|
||
|
|
}
|
||
|
|
|
||
|
|
# Performance alerts
|
||
|
|
if self._detect_performance_degradation(metrics):
|
||
|
|
self._trigger_performance_optimization(metrics)
|
||
|
|
|
||
|
|
return PerformanceReport(metrics)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Optimization Algorithms
|
||
|
|
|
||
|
|
**Efficiency Optimization Engine:**
|
||
|
|
```python
|
||
|
|
class EfficiencyOptimizer:
|
||
|
|
def optimize_execution(self, task_plan):
|
||
|
|
optimizations = [
|
||
|
|
self._optimize_parallel_execution(task_plan),
|
||
|
|
self._optimize_tool_selection(task_plan),
|
||
|
|
self._optimize_resource_allocation(task_plan),
|
||
|
|
self._optimize_communication_patterns(task_plan)
|
||
|
|
]
|
||
|
|
|
||
|
|
optimized_plan = task_plan
|
||
|
|
for optimization in optimizations:
|
||
|
|
optimized_plan = optimization.apply(optimized_plan)
|
||
|
|
|
||
|
|
return optimized_plan
|
||
|
|
```
|
||
|
|
|
||
|
|
**Token Efficiency System:**
|
||
|
|
```python
|
||
|
|
class TokenEfficiencyManager:
|
||
|
|
def optimize_token_usage(self, context, output_requirements):
|
||
|
|
# Compression strategies
|
||
|
|
compression_level = self._determine_compression_level(context)
|
||
|
|
|
||
|
|
if compression_level == 'high':
|
||
|
|
return self._apply_symbol_compression(output_requirements)
|
||
|
|
elif compression_level == 'medium':
|
||
|
|
return self._apply_structural_compression(output_requirements)
|
||
|
|
else:
|
||
|
|
return output_requirements # No compression needed
|
||
|
|
|
||
|
|
def _apply_symbol_compression(self, content):
|
||
|
|
# Symbol replacement for technical concepts
|
||
|
|
symbol_map = {
|
||
|
|
'authentication': '🔐 auth',
|
||
|
|
'performance': '⚡ perf',
|
||
|
|
'security': '🛡️ sec',
|
||
|
|
'leads to': '→',
|
||
|
|
'because': '∵'
|
||
|
|
}
|
||
|
|
|
||
|
|
compressed = content
|
||
|
|
for term, symbol in symbol_map.items():
|
||
|
|
compressed = compressed.replace(term, symbol)
|
||
|
|
|
||
|
|
return compressed
|
||
|
|
```
|
||
|
|
|
||
|
|
### Resource Constraint Handling
|
||
|
|
|
||
|
|
**Adaptive Scaling:**
|
||
|
|
```python
|
||
|
|
class AdaptiveScaler:
|
||
|
|
def handle_resource_constraints(self, current_load, available_resources):
|
||
|
|
scaling_strategies = {
|
||
|
|
'memory_pressure': [
|
||
|
|
self._enable_memory_compression,
|
||
|
|
self._reduce_context_window,
|
||
|
|
self._defer_non_critical_tasks
|
||
|
|
],
|
||
|
|
'cpu_pressure': [
|
||
|
|
self._reduce_parallel_operations,
|
||
|
|
self._optimize_computation_patterns,
|
||
|
|
self._enable_lazy_evaluation
|
||
|
|
],
|
||
|
|
'token_pressure': [
|
||
|
|
self._enable_compression_mode,
|
||
|
|
self._reduce_output_verbosity,
|
||
|
|
self._optimize_communication_patterns
|
||
|
|
]
|
||
|
|
}
|
||
|
|
|
||
|
|
pressure_type = self._identify_pressure_type(current_load, available_resources)
|
||
|
|
strategies = scaling_strategies.get(pressure_type, [])
|
||
|
|
|
||
|
|
for strategy in strategies:
|
||
|
|
if self._attempt_strategy(strategy):
|
||
|
|
break
|
||
|
|
```
|
||
|
|
|
||
|
|
**Performance Zones:**
|
||
|
|
```python
|
||
|
|
class PerformanceZoneManager:
|
||
|
|
ZONES = {
|
||
|
|
'green': { # 0-75% resource usage
|
||
|
|
'behavior': 'full_capability',
|
||
|
|
'mcp_servers': 'all_available',
|
||
|
|
'parallel_operations': 'unlimited',
|
||
|
|
'output_verbosity': 'full'
|
||
|
|
},
|
||
|
|
'yellow': { # 75-85% resource usage
|
||
|
|
'behavior': 'efficiency_mode',
|
||
|
|
'mcp_servers': 'essential_only',
|
||
|
|
'parallel_operations': 'limited',
|
||
|
|
'output_verbosity': 'reduced'
|
||
|
|
},
|
||
|
|
'red': { # 85%+ resource usage
|
||
|
|
'behavior': 'emergency_mode',
|
||
|
|
'mcp_servers': 'critical_only',
|
||
|
|
'parallel_operations': 'disabled',
|
||
|
|
'output_verbosity': 'minimal'
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
def adapt_to_zone(self, current_zone):
|
||
|
|
configuration = self.ZONES[current_zone]
|
||
|
|
return self._apply_zone_configuration(configuration)
|
||
|
|
```
|
||
|
|
|
||
|
|
## Agent Coordination
|
||
|
|
|
||
|
|
### 13-Agent Collaboration Architecture
|
||
|
|
|
||
|
|
**Agent Communication Protocol:**
|
||
|
|
```python
|
||
|
|
class AgentCommunicationProtocol:
|
||
|
|
def __init__(self):
|
||
|
|
self.agents = {
|
||
|
|
'system-architect': SystemArchitectAgent(),
|
||
|
|
'backend-architect': BackendArchitectAgent(),
|
||
|
|
'frontend-architect': FrontendArchitectAgent(),
|
||
|
|
'devops-architect': DevOpsArchitectAgent(),
|
||
|
|
'security-engineer': SecurityEngineerAgent(),
|
||
|
|
'performance-engineer': PerformanceEngineerAgent(),
|
||
|
|
'quality-engineer': QualityEngineerAgent(),
|
||
|
|
'refactoring-expert': RefactoringExpertAgent(),
|
||
|
|
'root-cause-analyst': RootCauseAnalystAgent(),
|
||
|
|
'python-expert': PythonExpertAgent(),
|
||
|
|
'requirements-analyst': RequirementsAnalystAgent(),
|
||
|
|
'technical-writer': TechnicalWriterAgent(),
|
||
|
|
'learning-guide': LearningGuideAgent()
|
||
|
|
}
|
||
|
|
|
||
|
|
def coordinate_agents(self, task, selected_agents):
|
||
|
|
coordination = AgentCoordination()
|
||
|
|
|
||
|
|
# Establish communication channels
|
||
|
|
for agent_id in selected_agents:
|
||
|
|
agent = self.agents[agent_id]
|
||
|
|
coordination.add_agent(agent, self._determine_role(agent, task))
|
||
|
|
|
||
|
|
# Define collaboration patterns
|
||
|
|
collaboration_pattern = self._design_collaboration(selected_agents, task)
|
||
|
|
coordination.set_pattern(collaboration_pattern)
|
||
|
|
|
||
|
|
return coordination
|
||
|
|
```
|
||
|
|
|
||
|
|
**Agent Specialization Matrix:**
|
||
|
|
```python
|
||
|
|
AGENT_CAPABILITIES = {
|
||
|
|
'system-architect': {
|
||
|
|
'primary_domains': ['architecture', 'system_design', 'scalability'],
|
||
|
|
'collaboration_style': 'strategic_lead',
|
||
|
|
'decision_authority': 'high',
|
||
|
|
'expertise_areas': ['microservices', 'distributed_systems', 'cloud_architecture']
|
||
|
|
},
|
||
|
|
'security-engineer': {
|
||
|
|
'primary_domains': ['security', 'compliance', 'threat_modeling'],
|
||
|
|
'collaboration_style': 'critical_reviewer',
|
||
|
|
'decision_authority': 'veto_power',
|
||
|
|
'expertise_areas': ['authentication', 'encryption', 'vulnerability_assessment']
|
||
|
|
},
|
||
|
|
'frontend-architect': {
|
||
|
|
'primary_domains': ['ui', 'ux', 'accessibility', 'performance'],
|
||
|
|
'collaboration_style': 'creative_contributor',
|
||
|
|
'decision_authority': 'domain_expert',
|
||
|
|
'expertise_areas': ['react', 'vue', 'accessibility', 'responsive_design']
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
### Inter-Agent Communication
|
||
|
|
|
||
|
|
**Message Passing System:**
|
||
|
|
```python
|
||
|
|
class AgentMessageBus:
|
||
|
|
def __init__(self):
|
||
|
|
self.message_queue = MessageQueue()
|
||
|
|
self.routing_table = RoutingTable()
|
||
|
|
|
||
|
|
def send_message(self, sender, recipient, message_type, payload):
|
||
|
|
message = AgentMessage(
|
||
|
|
sender=sender,
|
||
|
|
recipient=recipient,
|
||
|
|
type=message_type,
|
||
|
|
payload=payload,
|
||
|
|
timestamp=time.now()
|
||
|
|
)
|
||
|
|
|
||
|
|
self.message_queue.enqueue(message)
|
||
|
|
self._route_message(message)
|
||
|
|
|
||
|
|
def _route_message(self, message):
|
||
|
|
route = self.routing_table.get_route(message.sender, message.recipient)
|
||
|
|
for hop in route:
|
||
|
|
hop.process_message(message)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Collaboration Patterns:**
|
||
|
|
```python
|
||
|
|
class CollaborationPatterns:
|
||
|
|
@staticmethod
|
||
|
|
def hierarchical_pattern(agents):
|
||
|
|
# Primary agent leads, others provide specialized input
|
||
|
|
primary = agents[0]
|
||
|
|
supporting = agents[1:]
|
||
|
|
|
||
|
|
return CollaborationStructure(
|
||
|
|
lead=primary,
|
||
|
|
supporters=supporting,
|
||
|
|
communication_flow='hub_and_spoke',
|
||
|
|
decision_making='lead_decides'
|
||
|
|
)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def peer_to_peer_pattern(agents):
|
||
|
|
# Equal collaboration, consensus-based decisions
|
||
|
|
return CollaborationStructure(
|
||
|
|
participants=agents,
|
||
|
|
communication_flow='mesh',
|
||
|
|
decision_making='consensus'
|
||
|
|
)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def pipeline_pattern(agents):
|
||
|
|
# Sequential processing, each agent builds on previous
|
||
|
|
return CollaborationStructure(
|
||
|
|
sequence=agents,
|
||
|
|
communication_flow='pipeline',
|
||
|
|
decision_making='sequential_refinement'
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Agent Lifecycle Management
|
||
|
|
|
||
|
|
**Agent Activation and Deactivation:**
|
||
|
|
```python
|
||
|
|
class AgentLifecycleManager:
|
||
|
|
def activate_agent(self, agent_id, task_context):
|
||
|
|
agent = self._get_agent(agent_id)
|
||
|
|
|
||
|
|
# Initialize agent with task context
|
||
|
|
agent.initialize(task_context)
|
||
|
|
|
||
|
|
# Establish connections with other active agents
|
||
|
|
active_agents = self._get_active_agents()
|
||
|
|
for other_agent in active_agents:
|
||
|
|
self._establish_connection(agent, other_agent)
|
||
|
|
|
||
|
|
# Register agent in coordination system
|
||
|
|
self.coordination_system.register_agent(agent)
|
||
|
|
|
||
|
|
def deactivate_agent(self, agent_id):
|
||
|
|
agent = self._get_agent(agent_id)
|
||
|
|
|
||
|
|
# Finalize agent work
|
||
|
|
agent.finalize()
|
||
|
|
|
||
|
|
# Cleanup connections
|
||
|
|
self._cleanup_connections(agent)
|
||
|
|
|
||
|
|
# Unregister from coordination system
|
||
|
|
self.coordination_system.unregister_agent(agent)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Agent State Management:**
|
||
|
|
```python
|
||
|
|
class AgentStateManager:
|
||
|
|
def manage_agent_state(self, agent, task_progression):
|
||
|
|
current_state = agent.get_state()
|
||
|
|
|
||
|
|
state_transitions = {
|
||
|
|
'idle': ['activating', 'terminated'],
|
||
|
|
'activating': ['active', 'error'],
|
||
|
|
'active': ['collaborating', 'finalizing', 'error'],
|
||
|
|
'collaborating': ['active', 'finalizing'],
|
||
|
|
'finalizing': ['completed', 'error'],
|
||
|
|
'completed': ['idle', 'terminated'],
|
||
|
|
'error': ['recovering', 'terminated']
|
||
|
|
}
|
||
|
|
|
||
|
|
valid_transitions = state_transitions[current_state]
|
||
|
|
next_state = self._determine_next_state(task_progression, valid_transitions)
|
||
|
|
|
||
|
|
if next_state in valid_transitions:
|
||
|
|
agent.transition_to(next_state)
|
||
|
|
else:
|
||
|
|
raise InvalidStateTransition(current_state, next_state)
|
||
|
|
```
|
||
|
|
|
||
|
|
## MCP Integration
|
||
|
|
|
||
|
|
### MCP Server Architecture
|
||
|
|
|
||
|
|
**Server Connection Management:**
|
||
|
|
```python
|
||
|
|
class MCPConnectionManager:
|
||
|
|
def __init__(self):
|
||
|
|
self.servers = {
|
||
|
|
'context7': MCPServer('context7', 'documentation'),
|
||
|
|
'sequential': MCPServer('sequential', 'reasoning'),
|
||
|
|
'magic': MCPServer('magic', 'ui_generation'),
|
||
|
|
'playwright': MCPServer('playwright', 'browser_automation'),
|
||
|
|
'morphllm': MCPServer('morphllm', 'code_transformation'),
|
||
|
|
'serena': MCPServer('serena', 'semantic_analysis')
|
||
|
|
}
|
||
|
|
self.connection_pool = ConnectionPool(max_connections=10)
|
||
|
|
|
||
|
|
def connect_server(self, server_name, task_context):
|
||
|
|
server = self.servers[server_name]
|
||
|
|
connection = self.connection_pool.get_connection(server)
|
||
|
|
|
||
|
|
# Initialize server with task context
|
||
|
|
initialization_result = connection.initialize(task_context)
|
||
|
|
|
||
|
|
if initialization_result.success:
|
||
|
|
return MCPConnection(server, connection)
|
||
|
|
else:
|
||
|
|
raise MCPConnectionError(f"Failed to connect to {server_name}")
|
||
|
|
```
|
||
|
|
|
||
|
|
**Protocol Implementation:**
|
||
|
|
```python
|
||
|
|
class MCPProtocolHandler:
|
||
|
|
def handle_request(self, server, request):
|
||
|
|
# Format request according to MCP protocol
|
||
|
|
mcp_request = {
|
||
|
|
'jsonrpc': '2.0',
|
||
|
|
'id': self._generate_request_id(),
|
||
|
|
'method': request.method,
|
||
|
|
'params': request.params
|
||
|
|
}
|
||
|
|
|
||
|
|
# Send request and handle response
|
||
|
|
raw_response = server.send_request(mcp_request)
|
||
|
|
|
||
|
|
# Parse and validate response
|
||
|
|
response = self._parse_response(raw_response)
|
||
|
|
self._validate_response(response)
|
||
|
|
|
||
|
|
return MCPResponse(response)
|
||
|
|
```
|
||
|
|
|
||
|
|
### External Tool Coordination
|
||
|
|
|
||
|
|
**Multi-Server Orchestration:**
|
||
|
|
```python
|
||
|
|
class MCPOrchestrator:
|
||
|
|
def orchestrate_servers(self, task_requirements, available_servers):
|
||
|
|
# Analyze task requirements
|
||
|
|
server_needs = self._analyze_server_needs(task_requirements)
|
||
|
|
|
||
|
|
# Select optimal server combination
|
||
|
|
selected_servers = self._select_servers(server_needs, available_servers)
|
||
|
|
|
||
|
|
# Plan execution strategy
|
||
|
|
execution_plan = self._plan_execution(selected_servers, task_requirements)
|
||
|
|
|
||
|
|
# Coordinate execution
|
||
|
|
results = []
|
||
|
|
for step in execution_plan.steps:
|
||
|
|
if step.parallel:
|
||
|
|
step_results = self._execute_parallel(step.servers, step.requests)
|
||
|
|
else:
|
||
|
|
step_results = self._execute_sequential(step.servers, step.requests)
|
||
|
|
results.extend(step_results)
|
||
|
|
|
||
|
|
return OrchestrationResult(results)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Server Capability Mapping:**
|
||
|
|
```python
|
||
|
|
MCP_SERVER_CAPABILITIES = {
|
||
|
|
'context7': {
|
||
|
|
'primary_functions': ['documentation_lookup', 'pattern_retrieval'],
|
||
|
|
'input_types': ['library_name', 'framework_query'],
|
||
|
|
'output_types': ['documentation', 'code_examples'],
|
||
|
|
'performance_profile': {'latency': 'low', 'throughput': 'high'},
|
||
|
|
'resource_requirements': {'memory': 'low', 'cpu': 'low'}
|
||
|
|
},
|
||
|
|
'sequential': {
|
||
|
|
'primary_functions': ['structured_reasoning', 'problem_decomposition'],
|
||
|
|
'input_types': ['complex_problem', 'analysis_request'],
|
||
|
|
'output_types': ['reasoning_chain', 'solution_steps'],
|
||
|
|
'performance_profile': {'latency': 'medium', 'throughput': 'medium'},
|
||
|
|
'resource_requirements': {'memory': 'medium', 'cpu': 'high'}
|
||
|
|
},
|
||
|
|
'magic': {
|
||
|
|
'primary_functions': ['ui_generation', 'component_creation'],
|
||
|
|
'input_types': ['ui_specification', 'design_requirements'],
|
||
|
|
'output_types': ['react_components', 'css_styles'],
|
||
|
|
'performance_profile': {'latency': 'medium', 'throughput': 'medium'},
|
||
|
|
'resource_requirements': {'memory': 'medium', 'cpu': 'medium'}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
### Server Lifecycle Management
|
||
|
|
|
||
|
|
**Connection Pooling:**
|
||
|
|
```python
|
||
|
|
class MCPConnectionPool:
|
||
|
|
def __init__(self, max_connections_per_server=3):
|
||
|
|
self.pools = {}
|
||
|
|
self.max_connections = max_connections_per_server
|
||
|
|
|
||
|
|
def get_connection(self, server_name):
|
||
|
|
if server_name not in self.pools:
|
||
|
|
self.pools[server_name] = ServerConnectionPool(
|
||
|
|
server_name,
|
||
|
|
self.max_connections
|
||
|
|
)
|
||
|
|
|
||
|
|
return self.pools[server_name].acquire_connection()
|
||
|
|
|
||
|
|
def release_connection(self, server_name, connection):
|
||
|
|
pool = self.pools[server_name]
|
||
|
|
pool.release_connection(connection)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Health Monitoring:**
|
||
|
|
```python
|
||
|
|
class MCPHealthMonitor:
|
||
|
|
def monitor_server_health(self, servers):
|
||
|
|
health_status = {}
|
||
|
|
|
||
|
|
for server_name, server in servers.items():
|
||
|
|
health_check = self._perform_health_check(server)
|
||
|
|
health_status[server_name] = {
|
||
|
|
'status': health_check.status,
|
||
|
|
'response_time': health_check.response_time,
|
||
|
|
'error_rate': health_check.error_rate,
|
||
|
|
'resource_usage': health_check.resource_usage
|
||
|
|
}
|
||
|
|
|
||
|
|
return HealthReport(health_status)
|
||
|
|
|
||
|
|
def _perform_health_check(self, server):
|
||
|
|
try:
|
||
|
|
start_time = time.time()
|
||
|
|
ping_response = server.ping()
|
||
|
|
response_time = time.time() - start_time
|
||
|
|
|
||
|
|
return HealthCheck(
|
||
|
|
status='healthy' if ping_response.success else 'unhealthy',
|
||
|
|
response_time=response_time,
|
||
|
|
error_rate=server.get_error_rate(),
|
||
|
|
resource_usage=server.get_resource_usage()
|
||
|
|
)
|
||
|
|
except Exception as e:
|
||
|
|
return HealthCheck(status='error', error=str(e))
|
||
|
|
```
|
||
|
|
|
||
|
|
## Configuration
|
||
|
|
|
||
|
|
### Component Management System
|
||
|
|
|
||
|
|
**Component Registry:**
|
||
|
|
```python
|
||
|
|
class ComponentRegistry:
|
||
|
|
def __init__(self, component_directory):
|
||
|
|
self.component_directory = Path(component_directory)
|
||
|
|
self.components = {}
|
||
|
|
self.dependency_graph = DependencyGraph()
|
||
|
|
|
||
|
|
def discover_components(self):
|
||
|
|
for component_file in self.component_directory.glob('**/*.py'):
|
||
|
|
component_class = self._load_component_class(component_file)
|
||
|
|
if self._is_valid_component(component_class):
|
||
|
|
component_id = component_class.get_id()
|
||
|
|
self.components[component_id] = component_class
|
||
|
|
self._register_dependencies(component_id, component_class)
|
||
|
|
|
||
|
|
def resolve_dependencies(self, requested_components):
|
||
|
|
# Topological sort for installation order
|
||
|
|
all_dependencies = set()
|
||
|
|
for component_id in requested_components:
|
||
|
|
dependencies = self._get_transitive_dependencies(component_id)
|
||
|
|
all_dependencies.update(dependencies)
|
||
|
|
|
||
|
|
return self.dependency_graph.topological_sort(all_dependencies)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Dynamic Configuration System:**
|
||
|
|
```python
|
||
|
|
class ConfigurationManager:
|
||
|
|
def __init__(self):
|
||
|
|
self.config_sources = [
|
||
|
|
EnvironmentConfigSource(),
|
||
|
|
FileConfigSource('~/.claude/config.json'),
|
||
|
|
DefaultConfigSource()
|
||
|
|
]
|
||
|
|
self.config_cache = ConfigCache()
|
||
|
|
|
||
|
|
def get_configuration(self, key, context=None):
|
||
|
|
# Check cache first
|
||
|
|
cached_value = self.config_cache.get(key, context)
|
||
|
|
if cached_value is not None:
|
||
|
|
return cached_value
|
||
|
|
|
||
|
|
# Resolve from sources in priority order
|
||
|
|
for source in self.config_sources:
|
||
|
|
value = source.get(key, context)
|
||
|
|
if value is not None:
|
||
|
|
self.config_cache.set(key, value, context)
|
||
|
|
return value
|
||
|
|
|
||
|
|
raise ConfigurationNotFound(key)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Environment Setup
|
||
|
|
|
||
|
|
**Installation Orchestration:**
|
||
|
|
```python
|
||
|
|
class InstallationOrchestrator:
|
||
|
|
def __init__(self):
|
||
|
|
self.validators = [
|
||
|
|
SystemCompatibilityValidator(),
|
||
|
|
DependencyValidator(),
|
||
|
|
PermissionValidator()
|
||
|
|
]
|
||
|
|
self.installers = {
|
||
|
|
'core': CoreInstaller(),
|
||
|
|
'mcp': MCPInstaller(),
|
||
|
|
'modes': ModesInstaller(),
|
||
|
|
'agents': AgentsInstaller()
|
||
|
|
}
|
||
|
|
|
||
|
|
def install_components(self, component_list, options):
|
||
|
|
# Pre-installation validation
|
||
|
|
validation_result = self._validate_environment(component_list)
|
||
|
|
if not validation_result.valid:
|
||
|
|
raise InstallationError(validation_result.errors)
|
||
|
|
|
||
|
|
# Resolve installation order
|
||
|
|
install_order = self._resolve_install_order(component_list)
|
||
|
|
|
||
|
|
# Execute installation
|
||
|
|
for component in install_order:
|
||
|
|
installer = self.installers[component.type]
|
||
|
|
result = installer.install(component, options)
|
||
|
|
if not result.success:
|
||
|
|
self._rollback_installation(component_list, component)
|
||
|
|
raise InstallationError(result.error)
|
||
|
|
```
|
||
|
|
|
||
|
|
**File Merge Logic:**
|
||
|
|
```python
|
||
|
|
class FileMergeManager:
|
||
|
|
def merge_instruction_files(self, existing_content, new_content, merge_strategy):
|
||
|
|
if merge_strategy == 'preserve_user':
|
||
|
|
return self._preserve_user_merge(existing_content, new_content)
|
||
|
|
elif merge_strategy == 'smart_merge':
|
||
|
|
return self._smart_merge(existing_content, new_content)
|
||
|
|
elif merge_strategy == 'overwrite':
|
||
|
|
return new_content
|
||
|
|
else:
|
||
|
|
raise UnsupportedMergeStrategy(merge_strategy)
|
||
|
|
|
||
|
|
def _preserve_user_merge(self, existing, new):
|
||
|
|
# Parse both contents
|
||
|
|
existing_sections = self._parse_sections(existing)
|
||
|
|
new_sections = self._parse_sections(new)
|
||
|
|
|
||
|
|
# Merge logic: preserve user modifications, add new sections
|
||
|
|
merged_sections = existing_sections.copy()
|
||
|
|
for section_name, section_content in new_sections.items():
|
||
|
|
if section_name not in existing_sections:
|
||
|
|
merged_sections[section_name] = section_content
|
||
|
|
else:
|
||
|
|
# Keep existing if modified, otherwise update
|
||
|
|
if not self._has_user_modifications(existing_sections[section_name]):
|
||
|
|
merged_sections[section_name] = section_content
|
||
|
|
|
||
|
|
return self._reconstruct_content(merged_sections)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Deployment Patterns
|
||
|
|
|
||
|
|
**Multi-Environment Configuration:**
|
||
|
|
```python
|
||
|
|
class EnvironmentConfiguration:
|
||
|
|
ENVIRONMENTS = {
|
||
|
|
'development': {
|
||
|
|
'mcp_servers': 'all',
|
||
|
|
'logging_level': 'debug',
|
||
|
|
'performance_monitoring': 'detailed',
|
||
|
|
'resource_limits': 'relaxed'
|
||
|
|
},
|
||
|
|
'production': {
|
||
|
|
'mcp_servers': 'essential',
|
||
|
|
'logging_level': 'info',
|
||
|
|
'performance_monitoring': 'standard',
|
||
|
|
'resource_limits': 'strict'
|
||
|
|
},
|
||
|
|
'testing': {
|
||
|
|
'mcp_servers': 'mock',
|
||
|
|
'logging_level': 'debug',
|
||
|
|
'performance_monitoring': 'detailed',
|
||
|
|
'resource_limits': 'controlled'
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
def configure_for_environment(self, environment):
|
||
|
|
config = self.ENVIRONMENTS[environment]
|
||
|
|
return EnvironmentConfig(config)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Backup and Recovery:**
|
||
|
|
```python
|
||
|
|
class BackupManager:
|
||
|
|
def create_backup(self, installation_target):
|
||
|
|
backup_id = self._generate_backup_id()
|
||
|
|
backup_path = self._get_backup_path(backup_id)
|
||
|
|
|
||
|
|
# Create comprehensive backup
|
||
|
|
backup_contents = {
|
||
|
|
'claude_md': self._backup_claude_md(installation_target),
|
||
|
|
'custom_files': self._backup_custom_files(installation_target),
|
||
|
|
'mcp_config': self._backup_mcp_config(installation_target),
|
||
|
|
'metadata': self._create_backup_metadata()
|
||
|
|
}
|
||
|
|
|
||
|
|
self._write_backup(backup_path, backup_contents)
|
||
|
|
return BackupInfo(backup_id, backup_path, backup_contents.keys())
|
||
|
|
|
||
|
|
def restore_backup(self, backup_id, installation_target):
|
||
|
|
backup_path = self._get_backup_path(backup_id)
|
||
|
|
backup_contents = self._read_backup(backup_path)
|
||
|
|
|
||
|
|
# Restore files with validation
|
||
|
|
for content_type, content_data in backup_contents.items():
|
||
|
|
self._restore_content(content_type, content_data, installation_target)
|
||
|
|
```
|
||
|
|
|
||
|
|
## Extensibility
|
||
|
|
|
||
|
|
### Plugin Architecture
|
||
|
|
|
||
|
|
**Component Extension Framework:**
|
||
|
|
```python
|
||
|
|
class BaseComponent:
|
||
|
|
"""Base class for all SuperClaude components"""
|
||
|
|
|
||
|
|
def get_metadata(self):
|
||
|
|
"""Return component metadata including dependencies"""
|
||
|
|
raise NotImplementedError
|
||
|
|
|
||
|
|
def get_dependencies(self):
|
||
|
|
"""Return list of required component dependencies"""
|
||
|
|
return []
|
||
|
|
|
||
|
|
def install(self, install_dir):
|
||
|
|
"""Install component to target directory"""
|
||
|
|
raise NotImplementedError
|
||
|
|
|
||
|
|
def validate_environment(self, install_dir):
|
||
|
|
"""Validate installation environment"""
|
||
|
|
return ValidationResult.SUCCESS
|
||
|
|
|
||
|
|
def get_component_files(self):
|
||
|
|
"""Return list of files to be installed"""
|
||
|
|
raise NotImplementedError
|
||
|
|
|
||
|
|
class CustomAgentComponent(BaseComponent):
|
||
|
|
"""Example custom agent component"""
|
||
|
|
|
||
|
|
def get_metadata(self):
|
||
|
|
return {
|
||
|
|
'name': 'custom_agent',
|
||
|
|
'description': 'Custom domain specialist agent',
|
||
|
|
'version': '1.0.0',
|
||
|
|
'dependencies': ['core']
|
||
|
|
}
|
||
|
|
|
||
|
|
def install(self, install_dir):
|
||
|
|
agent_file = install_dir / 'AGENT_CustomSpecialist.md'
|
||
|
|
self._write_agent_definition(agent_file)
|
||
|
|
|
||
|
|
# Register agent in system
|
||
|
|
self._register_agent('custom-specialist', {
|
||
|
|
'triggers': ['custom', 'specialist'],
|
||
|
|
'capabilities': ['domain_analysis'],
|
||
|
|
'expertise_level': 0.9
|
||
|
|
})
|
||
|
|
```
|
||
|
|
|
||
|
|
**Custom MCP Server Integration:**
|
||
|
|
```python
|
||
|
|
class CustomMCPComponent(BaseComponent):
|
||
|
|
"""Framework for integrating custom MCP servers"""
|
||
|
|
|
||
|
|
def __init__(self, server_name, server_config):
|
||
|
|
self.server_name = server_name
|
||
|
|
self.server_config = server_config
|
||
|
|
|
||
|
|
def install(self, install_dir):
|
||
|
|
# Add server to MCP configuration
|
||
|
|
mcp_config_path = install_dir / '.claude.json'
|
||
|
|
mcp_config = self._load_mcp_config(mcp_config_path)
|
||
|
|
|
||
|
|
mcp_config['mcpServers'][self.server_name] = {
|
||
|
|
'command': self.server_config['command'],
|
||
|
|
'args': self.server_config['args'],
|
||
|
|
'env': self.server_config.get('env', {})
|
||
|
|
}
|
||
|
|
|
||
|
|
self._save_mcp_config(mcp_config_path, mcp_config)
|
||
|
|
|
||
|
|
# Create server instruction file
|
||
|
|
server_instruction_file = install_dir / f'MCP_{self.server_name}.md'
|
||
|
|
self._write_server_instructions(server_instruction_file)
|
||
|
|
```
|
||
|
|
|
||
|
|
### API Interfaces
|
||
|
|
|
||
|
|
**Agent Development API:**
|
||
|
|
```python
|
||
|
|
class AgentAPI:
|
||
|
|
"""API for developing custom agents"""
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def register_agent(agent_id, agent_config):
|
||
|
|
"""Register a new agent with the system"""
|
||
|
|
agent_registry = AgentRegistry()
|
||
|
|
agent_registry.register(agent_id, agent_config)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def define_triggers(agent_id, triggers):
|
||
|
|
"""Define activation triggers for agent"""
|
||
|
|
trigger_system = TriggerSystem()
|
||
|
|
trigger_system.register_triggers(agent_id, triggers)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def set_capabilities(agent_id, capabilities):
|
||
|
|
"""Define agent capabilities and expertise areas"""
|
||
|
|
capability_system = CapabilitySystem()
|
||
|
|
capability_system.register_capabilities(agent_id, capabilities)
|
||
|
|
|
||
|
|
# Example usage
|
||
|
|
AgentAPI.register_agent('data-scientist', {
|
||
|
|
'domain': 'data_science',
|
||
|
|
'expertise_level': 0.95,
|
||
|
|
'collaboration_style': 'analytical_contributor'
|
||
|
|
})
|
||
|
|
|
||
|
|
AgentAPI.define_triggers('data-scientist', [
|
||
|
|
'data analysis', 'machine learning', 'statistics',
|
||
|
|
'pandas', 'numpy', 'scikit-learn'
|
||
|
|
])
|
||
|
|
|
||
|
|
AgentAPI.set_capabilities('data-scientist', [
|
||
|
|
'data_analysis', 'model_development', 'statistical_analysis',
|
||
|
|
'data_visualization', 'feature_engineering'
|
||
|
|
])
|
||
|
|
```
|
||
|
|
|
||
|
|
**MCP Integration API:**
|
||
|
|
```python
|
||
|
|
class MCPIntegrationAPI:
|
||
|
|
"""API for integrating custom MCP servers"""
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def register_server(server_name, server_config):
|
||
|
|
"""Register a new MCP server"""
|
||
|
|
mcp_registry = MCPRegistry()
|
||
|
|
mcp_registry.register_server(server_name, server_config)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def define_capabilities(server_name, capabilities):
|
||
|
|
"""Define server capabilities and triggers"""
|
||
|
|
capability_registry = MCPCapabilityRegistry()
|
||
|
|
capability_registry.register_capabilities(server_name, capabilities)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
def set_activation_rules(server_name, rules):
|
||
|
|
"""Define when server should be activated"""
|
||
|
|
activation_system = ActivationSystem()
|
||
|
|
activation_system.register_rules(server_name, rules)
|
||
|
|
|
||
|
|
# Example usage
|
||
|
|
MCPIntegrationAPI.register_server('database-analyzer', {
|
||
|
|
'command': 'node',
|
||
|
|
'args': ['/path/to/database-analyzer-server.js'],
|
||
|
|
'capabilities': ['query_optimization', 'schema_analysis']
|
||
|
|
})
|
||
|
|
|
||
|
|
MCPIntegrationAPI.define_capabilities('database-analyzer', {
|
||
|
|
'primary_functions': ['sql_optimization', 'index_analysis'],
|
||
|
|
'input_types': ['sql_query', 'database_schema'],
|
||
|
|
'output_types': ['optimization_suggestions', 'performance_analysis']
|
||
|
|
})
|
||
|
|
```
|
||
|
|
|
||
|
|
### Extension Points
|
||
|
|
|
||
|
|
**Custom Behavioral Modes:**
|
||
|
|
```python
|
||
|
|
class CustomModeExtension:
|
||
|
|
"""Framework for creating custom behavioral modes"""
|
||
|
|
|
||
|
|
def __init__(self, mode_name, mode_config):
|
||
|
|
self.mode_name = mode_name
|
||
|
|
self.mode_config = mode_config
|
||
|
|
|
||
|
|
def create_mode_file(self, install_dir):
|
||
|
|
mode_file = install_dir / f'MODE_{self.mode_name}.md'
|
||
|
|
|
||
|
|
mode_content = self._generate_mode_content({
|
||
|
|
'purpose': self.mode_config['purpose'],
|
||
|
|
'activation_triggers': self.mode_config['triggers'],
|
||
|
|
'behavioral_changes': self.mode_config['behaviors'],
|
||
|
|
'outcomes': self.mode_config['outcomes'],
|
||
|
|
'examples': self.mode_config['examples']
|
||
|
|
})
|
||
|
|
|
||
|
|
mode_file.write_text(mode_content)
|
||
|
|
|
||
|
|
def register_mode(self):
|
||
|
|
mode_registry = ModeRegistry()
|
||
|
|
mode_registry.register_mode(self.mode_name, {
|
||
|
|
'triggers': self.mode_config['triggers'],
|
||
|
|
'priority': self.mode_config.get('priority', 'standard'),
|
||
|
|
'compatibility': self.mode_config.get('compatibility', [])
|
||
|
|
})
|
||
|
|
|
||
|
|
# Example: Creating a "research" behavioral mode
|
||
|
|
research_mode = CustomModeExtension('Research', {
|
||
|
|
'purpose': 'Deep academic and technical research with citation management',
|
||
|
|
'triggers': ['research', 'academic', 'study', 'investigate'],
|
||
|
|
'behaviors': [
|
||
|
|
'Systematic information gathering',
|
||
|
|
'Source validation and citation',
|
||
|
|
'Evidence-based reasoning',
|
||
|
|
'Academic writing style'
|
||
|
|
],
|
||
|
|
'outcomes': [
|
||
|
|
'Comprehensive research reports',
|
||
|
|
'Properly cited sources',
|
||
|
|
'Academic-quality analysis'
|
||
|
|
],
|
||
|
|
'examples': [
|
||
|
|
'Literature review generation',
|
||
|
|
'Technical research synthesis',
|
||
|
|
'Comparative analysis with citations'
|
||
|
|
]
|
||
|
|
})
|
||
|
|
```
|
||
|
|
|
||
|
|
**Command Extension Framework:**
|
||
|
|
```python
|
||
|
|
class CustomCommandExtension:
|
||
|
|
"""Framework for creating custom slash commands"""
|
||
|
|
|
||
|
|
def __init__(self, command_name, command_config):
|
||
|
|
self.command_name = command_name
|
||
|
|
self.command_config = command_config
|
||
|
|
|
||
|
|
def register_command(self):
|
||
|
|
command_registry = CommandRegistry()
|
||
|
|
command_registry.register_command(f'/sc:{self.command_name}', {
|
||
|
|
'handler': self.command_config['handler'],
|
||
|
|
'description': self.command_config['description'],
|
||
|
|
'flags': self.command_config.get('flags', []),
|
||
|
|
'auto_activation': self.command_config.get('auto_activation', {}),
|
||
|
|
'required_capabilities': self.command_config.get('capabilities', [])
|
||
|
|
})
|
||
|
|
|
||
|
|
def create_command_documentation(self, install_dir):
|
||
|
|
doc_file = install_dir / f'COMMAND_{self.command_name}.md'
|
||
|
|
|
||
|
|
doc_content = self._generate_command_docs({
|
||
|
|
'name': self.command_name,
|
||
|
|
'purpose': self.command_config['purpose'],
|
||
|
|
'usage': self.command_config['usage'],
|
||
|
|
'examples': self.command_config['examples'],
|
||
|
|
'integration': self.command_config.get('integration', {})
|
||
|
|
})
|
||
|
|
|
||
|
|
doc_file.write_text(doc_content)
|
||
|
|
|
||
|
|
# Example: Creating a "validate" command
|
||
|
|
validate_command = CustomCommandExtension('validate', {
|
||
|
|
'purpose': 'Comprehensive code and system validation',
|
||
|
|
'handler': 'ValidationCommandHandler',
|
||
|
|
'description': 'Multi-layer validation including security, performance, and quality',
|
||
|
|
'usage': [
|
||
|
|
'/sc:validate codebase/',
|
||
|
|
'/sc:validate --focus security auth-system/',
|
||
|
|
'/sc:validate --comprehensive --report project/'
|
||
|
|
],
|
||
|
|
'flags': ['focus', 'comprehensive', 'report', 'fix'],
|
||
|
|
'capabilities': ['code_analysis', 'security_scanning', 'performance_testing'],
|
||
|
|
'examples': [
|
||
|
|
'Security validation workflow',
|
||
|
|
'Performance validation and optimization',
|
||
|
|
'Quality gate validation for CI/CD'
|
||
|
|
]
|
||
|
|
})
|
||
|
|
```
|
||
|
|
|
||
|
|
## Technical Reference
|
||
|
|
|
||
|
|
### API Specifications
|
||
|
|
|
||
|
|
**Core Framework APIs:**
|
||
|
|
```python
|
||
|
|
# Component Management API
|
||
|
|
class ComponentManager:
|
||
|
|
def install_component(self, component_id: str, options: InstallOptions) -> InstallResult
|
||
|
|
def uninstall_component(self, component_id: str) -> UninstallResult
|
||
|
|
def list_components(self) -> List[ComponentInfo]
|
||
|
|
def get_component_status(self, component_id: str) -> ComponentStatus
|
||
|
|
def update_component(self, component_id: str, version: str) -> UpdateResult
|
||
|
|
|
||
|
|
# Agent Management API
|
||
|
|
class AgentManager:
|
||
|
|
def register_agent(self, agent_id: str, config: AgentConfig) -> RegistrationResult
|
||
|
|
def activate_agents(self, agent_ids: List[str], context: TaskContext) -> ActivationResult
|
||
|
|
def deactivate_agents(self, agent_ids: List[str]) -> DeactivationResult
|
||
|
|
def get_agent_status(self, agent_id: str) -> AgentStatus
|
||
|
|
def configure_agent_coordination(self, agents: List[str], pattern: str) -> CoordinationResult
|
||
|
|
|
||
|
|
# MCP Integration API
|
||
|
|
class MCPManager:
|
||
|
|
def register_server(self, server_name: str, config: MCPServerConfig) -> RegistrationResult
|
||
|
|
def connect_server(self, server_name: str, context: ConnectionContext) -> MCPConnection
|
||
|
|
def disconnect_server(self, server_name: str) -> DisconnectionResult
|
||
|
|
def get_server_health(self, server_name: str) -> HealthStatus
|
||
|
|
def execute_mcp_request(self, server: str, request: MCPRequest) -> MCPResponse
|
||
|
|
```
|
||
|
|
|
||
|
|
**Task Execution APIs:**
|
||
|
|
```python
|
||
|
|
# Task Management API
|
||
|
|
class TaskManager:
|
||
|
|
def create_task(self, task_spec: TaskSpecification) -> Task
|
||
|
|
def execute_task(self, task: Task, options: ExecutionOptions) -> TaskResult
|
||
|
|
def monitor_task(self, task_id: str) -> TaskStatus
|
||
|
|
def cancel_task(self, task_id: str) -> CancellationResult
|
||
|
|
def get_task_history(self, filters: TaskFilters) -> List[TaskHistory]
|
||
|
|
|
||
|
|
# Quality Management API
|
||
|
|
class QualityManager:
|
||
|
|
def validate_task(self, task: Task, criteria: ValidationCriteria) -> ValidationResult
|
||
|
|
def apply_quality_gates(self, task_result: TaskResult) -> QualityGateResult
|
||
|
|
def measure_quality(self, output: TaskOutput) -> QualityMetrics
|
||
|
|
def generate_quality_report(self, task_id: str) -> QualityReport
|
||
|
|
```
|
||
|
|
|
||
|
|
### Integration Patterns
|
||
|
|
|
||
|
|
**Event-Driven Architecture:**
|
||
|
|
```python
|
||
|
|
class EventBus:
|
||
|
|
"""Central event bus for component communication"""
|
||
|
|
|
||
|
|
def subscribe(self, event_type: str, handler: Callable) -> Subscription
|
||
|
|
def unsubscribe(self, subscription: Subscription) -> None
|
||
|
|
def publish(self, event: Event) -> PublishResult
|
||
|
|
def get_event_history(self, filters: EventFilters) -> List[Event]
|
||
|
|
|
||
|
|
# Event types
|
||
|
|
class EventTypes:
|
||
|
|
TASK_STARTED = "task.started"
|
||
|
|
TASK_COMPLETED = "task.completed"
|
||
|
|
AGENT_ACTIVATED = "agent.activated"
|
||
|
|
MCP_SERVER_CONNECTED = "mcp.server.connected"
|
||
|
|
QUALITY_GATE_FAILED = "quality.gate.failed"
|
||
|
|
PERFORMANCE_THRESHOLD_EXCEEDED = "performance.threshold.exceeded"
|
||
|
|
|
||
|
|
# Example event handler
|
||
|
|
def handle_task_completion(event: TaskCompletedEvent):
|
||
|
|
task_result = event.result
|
||
|
|
quality_metrics = quality_manager.measure_quality(task_result.output)
|
||
|
|
if quality_metrics.overall_score < 0.8:
|
||
|
|
event_bus.publish(QualityGateFailedEvent(task_result.task_id, quality_metrics))
|
||
|
|
```
|
||
|
|
|
||
|
|
**Plugin Integration Pattern:**
|
||
|
|
```python
|
||
|
|
class PluginManager:
|
||
|
|
"""Manages external plugins and extensions"""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.plugins = {}
|
||
|
|
self.plugin_loader = PluginLoader()
|
||
|
|
self.dependency_resolver = DependencyResolver()
|
||
|
|
|
||
|
|
def load_plugin(self, plugin_path: Path) -> PluginLoadResult:
|
||
|
|
plugin_spec = self.plugin_loader.load_spec(plugin_path)
|
||
|
|
dependencies = self.dependency_resolver.resolve(plugin_spec.dependencies)
|
||
|
|
|
||
|
|
if dependencies.resolvable:
|
||
|
|
plugin = self.plugin_loader.instantiate(plugin_spec)
|
||
|
|
plugin.initialize(self._create_plugin_context())
|
||
|
|
self.plugins[plugin_spec.id] = plugin
|
||
|
|
return PluginLoadResult.SUCCESS
|
||
|
|
else:
|
||
|
|
return PluginLoadResult.DEPENDENCY_ERROR
|
||
|
|
|
||
|
|
class Plugin:
|
||
|
|
"""Base class for SuperClaude plugins"""
|
||
|
|
|
||
|
|
def get_manifest(self) -> PluginManifest:
|
||
|
|
"""Return plugin metadata and capabilities"""
|
||
|
|
raise NotImplementedError
|
||
|
|
|
||
|
|
def initialize(self, context: PluginContext) -> InitializationResult:
|
||
|
|
"""Initialize plugin with system context"""
|
||
|
|
raise NotImplementedError
|
||
|
|
|
||
|
|
def shutdown(self) -> ShutdownResult:
|
||
|
|
"""Clean shutdown of plugin"""
|
||
|
|
raise NotImplementedError
|
||
|
|
```
|
||
|
|
|
||
|
|
### Implementation Details
|
||
|
|
|
||
|
|
**Memory Management:**
|
||
|
|
```python
|
||
|
|
class MemoryManager:
|
||
|
|
"""Manages system memory and context preservation"""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.context_cache = LRUCache(max_size=1000)
|
||
|
|
self.session_storage = SessionStorage()
|
||
|
|
self.memory_compressor = MemoryCompressor()
|
||
|
|
|
||
|
|
def store_context(self, session_id: str, context: SessionContext) -> StorageResult:
|
||
|
|
# Compress context if needed
|
||
|
|
if context.size > self.memory_threshold:
|
||
|
|
compressed_context = self.memory_compressor.compress(context)
|
||
|
|
return self.session_storage.store(session_id, compressed_context)
|
||
|
|
else:
|
||
|
|
return self.session_storage.store(session_id, context)
|
||
|
|
|
||
|
|
def retrieve_context(self, session_id: str) -> SessionContext:
|
||
|
|
stored_context = self.session_storage.retrieve(session_id)
|
||
|
|
if stored_context.compressed:
|
||
|
|
return self.memory_compressor.decompress(stored_context)
|
||
|
|
else:
|
||
|
|
return stored_context
|
||
|
|
```
|
||
|
|
|
||
|
|
**Performance Monitoring:**
|
||
|
|
```python
|
||
|
|
class PerformanceMonitor:
|
||
|
|
"""Real-time system performance monitoring"""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.metrics_collector = MetricsCollector()
|
||
|
|
self.alert_system = AlertSystem()
|
||
|
|
self.performance_analyzer = PerformanceAnalyzer()
|
||
|
|
|
||
|
|
def start_monitoring(self, components: List[str]):
|
||
|
|
for component in components:
|
||
|
|
self.metrics_collector.start_collection(component)
|
||
|
|
|
||
|
|
def analyze_performance(self) -> PerformanceAnalysis:
|
||
|
|
metrics = self.metrics_collector.get_recent_metrics()
|
||
|
|
analysis = self.performance_analyzer.analyze(metrics)
|
||
|
|
|
||
|
|
# Trigger alerts if needed
|
||
|
|
for alert in analysis.alerts:
|
||
|
|
self.alert_system.trigger_alert(alert)
|
||
|
|
|
||
|
|
return analysis
|
||
|
|
```
|
||
|
|
|
||
|
|
### Debugging and Troubleshooting
|
||
|
|
|
||
|
|
**Debug Information System:**
|
||
|
|
```python
|
||
|
|
class DebugManager:
|
||
|
|
"""Comprehensive debugging and diagnostic system"""
|
||
|
|
|
||
|
|
def enable_debug_mode(self, level: DebugLevel = DebugLevel.STANDARD):
|
||
|
|
self.debug_level = level
|
||
|
|
self.debug_logger = DebugLogger(level)
|
||
|
|
self.trace_collector = TraceCollector()
|
||
|
|
|
||
|
|
def collect_system_state(self) -> SystemState:
|
||
|
|
return SystemState(
|
||
|
|
agents=self._get_agent_states(),
|
||
|
|
mcp_servers=self._get_mcp_states(),
|
||
|
|
tasks=self._get_task_states(),
|
||
|
|
performance=self._get_performance_state(),
|
||
|
|
configuration=self._get_configuration_state()
|
||
|
|
)
|
||
|
|
|
||
|
|
def generate_diagnostic_report(self, issue_description: str) -> DiagnosticReport:
|
||
|
|
system_state = self.collect_system_state()
|
||
|
|
error_logs = self.debug_logger.get_recent_errors()
|
||
|
|
performance_metrics = self.performance_monitor.get_metrics()
|
||
|
|
|
||
|
|
return DiagnosticReport(
|
||
|
|
issue=issue_description,
|
||
|
|
system_state=system_state,
|
||
|
|
error_logs=error_logs,
|
||
|
|
performance_metrics=performance_metrics,
|
||
|
|
recommendations=self._generate_recommendations(system_state, error_logs)
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Error Recovery System:**
|
||
|
|
```python
|
||
|
|
class ErrorRecoveryManager:
|
||
|
|
"""Automated error detection and recovery"""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.recovery_strategies = {
|
||
|
|
'mcp_connection_failed': self._recover_mcp_connection,
|
||
|
|
'agent_activation_failed': self._recover_agent_activation,
|
||
|
|
'resource_exhaustion': self._recover_resource_exhaustion,
|
||
|
|
'quality_gate_failed': self._recover_quality_failure
|
||
|
|
}
|
||
|
|
|
||
|
|
def handle_error(self, error: SystemError) -> RecoveryResult:
|
||
|
|
error_type = self._classify_error(error)
|
||
|
|
|
||
|
|
if error_type in self.recovery_strategies:
|
||
|
|
recovery_strategy = self.recovery_strategies[error_type]
|
||
|
|
return recovery_strategy(error)
|
||
|
|
else:
|
||
|
|
return self._fallback_recovery(error)
|
||
|
|
|
||
|
|
def _recover_mcp_connection(self, error: MCPConnectionError) -> RecoveryResult:
|
||
|
|
# Attempt reconnection with backoff
|
||
|
|
server_name = error.server_name
|
||
|
|
max_retries = 3
|
||
|
|
|
||
|
|
for attempt in range(max_retries):
|
||
|
|
try:
|
||
|
|
connection = self.mcp_manager.reconnect_server(server_name)
|
||
|
|
return RecoveryResult.SUCCESS
|
||
|
|
except Exception:
|
||
|
|
time.sleep(2 ** attempt) # Exponential backoff
|
||
|
|
|
||
|
|
return RecoveryResult.FAILED
|
||
|
|
```
|
||
|
|
|
||
|
|
**System Health Monitoring:**
|
||
|
|
```python
|
||
|
|
class HealthMonitor:
|
||
|
|
"""Continuous system health monitoring and reporting"""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.health_checks = [
|
||
|
|
ComponentHealthCheck(),
|
||
|
|
AgentHealthCheck(),
|
||
|
|
MCPServerHealthCheck(),
|
||
|
|
PerformanceHealthCheck(),
|
||
|
|
MemoryHealthCheck()
|
||
|
|
]
|
||
|
|
|
||
|
|
def perform_health_check(self) -> HealthReport:
|
||
|
|
check_results = []
|
||
|
|
|
||
|
|
for health_check in self.health_checks:
|
||
|
|
try:
|
||
|
|
result = health_check.check()
|
||
|
|
check_results.append(result)
|
||
|
|
except Exception as e:
|
||
|
|
check_results.append(HealthCheckResult.ERROR(str(e)))
|
||
|
|
|
||
|
|
overall_health = self._calculate_overall_health(check_results)
|
||
|
|
|
||
|
|
return HealthReport(
|
||
|
|
overall_health=overall_health,
|
||
|
|
individual_results=check_results,
|
||
|
|
recommendations=self._generate_health_recommendations(check_results)
|
||
|
|
)
|
||
|
|
```
|