SuperClaude/Developer-Guide/technical-architecture.md

1729 lines
60 KiB
Markdown
Raw Normal View History

# SuperClaude Technical Architecture Guide 🏗️
## Overview
This technical architecture guide documents SuperClaude Framework's V4 orchestrator system - a sophisticated meta-programming framework that transforms Claude Code into a structured development platform through behavioral instruction injection and intelligent component orchestration.
**Target Audience**: Framework developers, system architects, contributors, and advanced users requiring deep technical understanding of SuperClaude's internal architecture and extension patterns.
**Architecture Philosophy**: SuperClaude operates as a **meta-framework** that enhances Claude Code through configuration-driven behavioral programming, intelligent task routing, and dynamic tool coordination rather than replacing core functionality.
## Table of Contents
1. [Architecture Overview](#architecture-overview) - Multi-layered orchestration pattern
2. [Detection Engine](#detection-engine) - Intelligent task classification and context analysis
3. [Routing Intelligence](#routing-intelligence) - Agent selection and resource allocation
4. [Quality Framework](#quality-framework) - Validation systems and quality gates
5. [Performance System](#performance-system) - Optimization and resource management
6. [Agent Coordination](#agent-coordination) - 13-agent collaboration architecture
7. [MCP Integration](#mcp-integration) - External tool coordination protocols
8. [Configuration](#configuration) - Component management and system customization
9. [Extensibility](#extensibility) - Plugin architecture and extension patterns
10. [Technical Reference](#technical-reference) - API specifications and implementation details
---
## Architecture Overview
### System Design Principles
**Meta-Framework Architecture**: SuperClaude enhances Claude Code through instruction injection rather than code modification, maintaining compatibility while adding sophisticated orchestration capabilities.
**Configuration-Driven Behavior**: Behavioral programming through structured `.md` files enables AI behavior modification without code changes, providing unprecedented flexibility in AI system customization.
**Intelligent Orchestration**: Dynamic coordination of specialized agents, MCP servers, and behavioral modes based on context analysis and task complexity detection.
### Core Components
```
┌─ User Interface Layer ──────────────────────────────┐
│ • Slash Commands (/sc:*) │
│ • Natural Language Processing │
│ • Flag-based Modifiers │
└─────────────────────────────────────────────────────┘
┌─ Detection & Routing Engine ────────────────────────┐
│ • Context Analysis │
│ • Task Classification │
│ • Complexity Scoring │
│ • Resource Assessment │
└─────────────────────────────────────────────────────┘
┌─ Orchestration Layer ───────────────────────────────┐
│ • Agent Selection & Coordination │
│ • MCP Server Activation │
│ • Behavioral Mode Management │
│ • Tool Integration │
└─────────────────────────────────────────────────────┘
┌─ Execution Framework ───────────────────────────────┐
│ • Task Management & Delegation │
│ • Quality Gates & Validation │
│ • Progress Tracking │
│ • Session Management │
└─────────────────────────────────────────────────────┘
┌─ Foundation Layer ──────────────────────────────────┐
│ • Claude Code Integration │
│ • Configuration Management │
│ • Component System │
│ • Memory & Persistence │
└─────────────────────────────────────────────────────┘
```
### Multi-Layered Orchestration Pattern
**Layer 1: Detection & Analysis**
- Intent parsing and context analysis
- Task complexity assessment and resource evaluation
- Pattern recognition and trigger detection
**Layer 2: Planning & Routing**
- Agent selection based on domain expertise
- MCP server activation for enhanced capabilities
- Behavioral mode selection for optimal communication
- Resource allocation and load balancing
**Layer 3: Coordination & Execution**
- Multi-agent collaboration and communication
- Tool integration and workflow orchestration
- Progress monitoring and quality validation
- Session persistence and context management
**Layer 4: Quality & Optimization**
- Continuous quality assessment and improvement
- Performance monitoring and optimization
- Learning and adaptation based on outcomes
- Feedback integration and system evolution
## Detection Engine
### Intelligent Task Classification
**Context Analysis Pipeline:**
```python
class TaskDetectionEngine:
def analyze_request(self, user_input, context):
analysis = {
'intent': self._extract_intent(user_input),
'complexity': self._assess_complexity(context),
'domain': self._identify_domain(user_input, context),
'scope': self._determine_scope(context),
'resources': self._evaluate_resources(context)
}
return self._classify_task(analysis)
```
**Pattern Recognition System:**
**Keyword-Based Detection:**
```python
TRIGGER_PATTERNS = {
'brainstorming': ['brainstorm', 'explore', 'maybe', 'not sure', 'thinking about'],
'security': ['auth', 'security', 'vulnerability', 'encryption', 'compliance'],
'ui_generation': ['component', 'UI', 'interface', 'dashboard', 'responsive'],
'performance': ['slow', 'optimization', 'bottleneck', 'latency', 'performance'],
'architecture': ['design', 'architecture', 'microservices', 'scalability']
}
```
**File Type Analysis:**
```python
FILE_TYPE_ROUTING = {
'.jsx': ['frontend-architect', 'magic-mcp'],
'.py': ['python-expert', 'backend-architect'],
'.ts': ['frontend-architect', 'backend-architect'],
'.sql': ['backend-architect', 'performance-engineer'],
'.md': ['technical-writer', 'documentation-specialist']
}
```
**Complexity Scoring Algorithm:**
```python
def calculate_complexity_score(context):
score = 0
# File scope analysis
if context.file_count > 10: score += 0.3
if context.directory_count > 3: score += 0.2
# Code analysis
if context.lines_of_code > 1000: score += 0.2
if context.dependencies > 5: score += 0.1
# Task characteristics
if context.involves_multiple_domains: score += 0.3
if context.requires_coordination: score += 0.2
return min(score, 1.0) # Cap at 1.0
```
### Auto-Activation Mechanisms
**Behavioral Mode Triggers:**
```python
class ModeDetection:
def detect_mode(self, task_analysis):
modes = []
if task_analysis.complexity > 0.7:
modes.append('task-management')
if task_analysis.uncertainty > 0.6:
modes.append('brainstorming')
if task_analysis.requires_tools > 3:
modes.append('orchestration')
if task_analysis.resource_pressure > 0.75:
modes.append('token-efficiency')
return modes
```
**Agent Selection Logic:**
```python
class AgentSelector:
def select_agents(self, task_analysis):
agents = []
# Domain-based selection
if 'security' in task_analysis.keywords:
agents.append('security-engineer')
if task_analysis.involves_ui:
agents.append('frontend-architect')
# Complexity-based selection
if task_analysis.complexity > 0.8:
agents.append('system-architect')
# Quality requirements
if task_analysis.quality_critical:
agents.append('quality-engineer')
return agents
```
**MCP Server Activation:**
```python
class MCPActivation:
def determine_mcp_servers(self, task_analysis):
servers = []
# Documentation needs
if task_analysis.needs_documentation:
servers.append('context7')
# Complex reasoning
if task_analysis.complexity > 0.6:
servers.append('sequential')
# UI development
if task_analysis.domain == 'frontend':
servers.append('magic')
# Browser testing
if 'testing' in task_analysis.keywords:
servers.append('playwright')
return servers
```
## Routing Intelligence
### Dynamic Resource Allocation
**Orchestration Decision Matrix:**
```python
class ResourceOrchestrator:
def allocate_resources(self, task_analysis, available_resources):
allocation = {
'agents': self._select_optimal_agents(task_analysis),
'mcp_servers': self._choose_mcp_servers(task_analysis),
'behavioral_modes': self._activate_modes(task_analysis),
'resource_limits': self._calculate_limits(available_resources)
}
return self._optimize_allocation(allocation)
```
**Load Balancing Strategy:**
```python
class LoadBalancer:
def balance_workload(self, tasks, resources):
# Resource capacity assessment
capacity = self._assess_resource_capacity()
# Task priority and dependency analysis
prioritized_tasks = self._prioritize_tasks(tasks)
# Optimal distribution algorithm
distribution = {}
for task in prioritized_tasks:
best_resource = self._find_best_resource(task, capacity)
distribution[task.id] = best_resource
capacity[best_resource] -= task.resource_requirement
return distribution
```
### Agent Coordination Protocols
**Multi-Agent Communication:**
```python
class AgentCoordinator:
def coordinate_agents(self, selected_agents, task_context):
coordination_plan = {
'primary_agent': self._select_primary(selected_agents, task_context),
'supporting_agents': self._organize_support(selected_agents),
'communication_flow': self._design_flow(selected_agents),
'decision_hierarchy': self._establish_hierarchy(selected_agents)
}
return coordination_plan
```
**Specialization Routing:**
```python
AGENT_SPECIALIZATIONS = {
'system-architect': {
'triggers': ['architecture', 'design', 'scalability'],
'capabilities': ['system_design', 'technology_selection'],
'coordination_priority': 'high',
'domain_expertise': 0.9
},
'security-engineer': {
'triggers': ['security', 'auth', 'vulnerability'],
'capabilities': ['threat_modeling', 'security_review'],
'coordination_priority': 'critical',
'domain_expertise': 0.95
}
}
```
### Tool Integration Optimization
**MCP Server Selection Algorithm:**
```python
class MCPSelector:
def optimize_server_selection(self, task_requirements):
# Capability mapping
server_capabilities = self._map_capabilities()
# Performance metrics
server_performance = self._get_performance_metrics()
# Cost-benefit analysis
optimal_set = []
for requirement in task_requirements:
candidates = self._find_capable_servers(requirement)
best_server = self._select_best(candidates, server_performance)
optimal_set.append(best_server)
return self._deduplicate_and_optimize(optimal_set)
```
**Parallel Execution Planning:**
```python
class ParallelPlanner:
def plan_parallel_execution(self, tasks, dependencies):
# Dependency graph analysis
dependency_graph = self._build_dependency_graph(tasks, dependencies)
# Parallel execution opportunities
parallel_groups = self._identify_parallel_groups(dependency_graph)
# Resource allocation for parallel tasks
execution_plan = []
for group in parallel_groups:
resources = self._allocate_group_resources(group)
execution_plan.append({
'tasks': group,
'resources': resources,
'execution_mode': 'parallel'
})
return execution_plan
```
### Performance Optimization
**Resource Constraint Handling:**
```python
class ConstraintManager:
def handle_constraints(self, resource_request, available_resources):
if self._exceeds_capacity(resource_request, available_resources):
# Adaptive scaling strategies
strategies = [
self._reduce_scope,
self._enable_compression,
self._defer_non_critical,
self._optimize_tool_selection
]
for strategy in strategies:
adjusted_request = strategy(resource_request)
if self._fits_capacity(adjusted_request, available_resources):
return adjusted_request
return resource_request
```
**Adaptive Performance Tuning:**
```python
class PerformanceTuner:
def tune_performance(self, execution_metrics):
# Performance analysis
bottlenecks = self._identify_bottlenecks(execution_metrics)
# Optimization recommendations
optimizations = []
for bottleneck in bottlenecks:
if bottleneck.type == 'memory':
optimizations.append(self._suggest_memory_optimization())
elif bottleneck.type == 'cpu':
optimizations.append(self._suggest_cpu_optimization())
elif bottleneck.type == 'io':
optimizations.append(self._suggest_io_optimization())
return optimizations
```
## Quality Framework
### Validation Systems
**Multi-Layer Quality Gates:**
```python
class QualityGateSystem:
def __init__(self):
self.gates = [
PreExecutionGate(), # Input validation and risk assessment
ExecutionGate(), # Real-time quality monitoring
PostExecutionGate(), # Output validation and completeness
IntegrationGate() # System integration validation
]
def validate(self, task, context, output):
for gate in self.gates:
result = gate.evaluate(task, context, output)
if not result.passes:
return self._handle_quality_failure(result, gate)
return QualityResult.PASSED
```
**Risk Assessment Engine:**
```python
class RiskAssessment:
def assess_risk(self, task_context):
risk_factors = {
'complexity': self._assess_complexity_risk(task_context),
'scope': self._assess_scope_risk(task_context),
'resources': self._assess_resource_risk(task_context),
'dependencies': self._assess_dependency_risk(task_context),
'criticality': self._assess_criticality_risk(task_context)
}
overall_risk = self._calculate_weighted_risk(risk_factors)
return RiskProfile(overall_risk, risk_factors)
```
### Quality Metrics
**Comprehensive Quality Measurement:**
```python
class QualityMetrics:
def measure_quality(self, execution_result):
metrics = {
'correctness': self._measure_correctness(execution_result),
'completeness': self._measure_completeness(execution_result),
'performance': self._measure_performance(execution_result),
'maintainability': self._measure_maintainability(execution_result),
'security': self._measure_security(execution_result),
'usability': self._measure_usability(execution_result)
}
return QualityScore(
overall=self._calculate_overall_score(metrics),
detailed=metrics
)
```
**Continuous Quality Monitoring:**
```python
class QualityMonitor:
def monitor_execution(self, task_execution):
quality_checks = [
self._check_progress_quality(),
self._check_resource_utilization(),
self._check_error_rates(),
self._check_performance_degradation(),
self._check_output_quality()
]
for check in quality_checks:
if check.indicates_quality_issue():
self._trigger_corrective_action(check)
```
### Validation Criteria
**Domain-Specific Validation:**
```python
VALIDATION_CRITERIA = {
'security': {
'required_checks': ['input_sanitization', 'authorization', 'encryption'],
'quality_threshold': 0.95,
'critical_failures': ['security_vulnerabilities', 'data_exposure']
},
'performance': {
'required_metrics': ['response_time', 'memory_usage', 'cpu_utilization'],
'quality_threshold': 0.85,
'performance_targets': {'response_time': '<2s', 'memory': '<1GB'}
},
'frontend': {
'required_checks': ['accessibility', 'responsiveness', 'browser_compatibility'],
'quality_threshold': 0.90,
'accessibility_compliance': 'WCAG_2.1_AA'
}
}
```
**Testing Framework Integration:**
```python
class TestingFramework:
def integrate_testing(self, task_result):
test_suite = self._generate_test_suite(task_result)
# Automated testing
unit_results = self._run_unit_tests(test_suite)
integration_results = self._run_integration_tests(test_suite)
# Quality validation
if task_result.domain == 'frontend':
ui_results = self._run_ui_tests(test_suite)
accessibility_results = self._run_accessibility_tests(test_suite)
return TestResults(unit_results, integration_results, ui_results)
```
## Performance System
### Resource Management
**Dynamic Resource Allocation:**
```python
class ResourceManager:
def __init__(self):
self.resource_pools = {
'memory': MemoryPool(capacity='8GB'),
'cpu': CPUPool(cores=8),
'mcp_connections': MCPPool(max_connections=6),
'token_budget': TokenPool(limit=128000)
}
def allocate_resources(self, task_requirements):
allocation = {}
for resource_type, requirement in task_requirements.items():
pool = self.resource_pools[resource_type]
allocation[resource_type] = pool.allocate(requirement)
return ResourceAllocation(allocation)
```
**Performance Monitoring:**
```python
class PerformanceMonitor:
def monitor_system_performance(self):
metrics = {
'response_time': self._measure_response_time(),
'throughput': self._measure_throughput(),
'resource_utilization': self._measure_resource_usage(),
'error_rate': self._measure_error_rate(),
'mcp_performance': self._measure_mcp_performance()
}
# Performance alerts
if self._detect_performance_degradation(metrics):
self._trigger_performance_optimization(metrics)
return PerformanceReport(metrics)
```
### Optimization Algorithms
**Efficiency Optimization Engine:**
```python
class EfficiencyOptimizer:
def optimize_execution(self, task_plan):
optimizations = [
self._optimize_parallel_execution(task_plan),
self._optimize_tool_selection(task_plan),
self._optimize_resource_allocation(task_plan),
self._optimize_communication_patterns(task_plan)
]
optimized_plan = task_plan
for optimization in optimizations:
optimized_plan = optimization.apply(optimized_plan)
return optimized_plan
```
**Token Efficiency System:**
```python
class TokenEfficiencyManager:
def optimize_token_usage(self, context, output_requirements):
# Compression strategies
compression_level = self._determine_compression_level(context)
if compression_level == 'high':
return self._apply_symbol_compression(output_requirements)
elif compression_level == 'medium':
return self._apply_structural_compression(output_requirements)
else:
return output_requirements # No compression needed
def _apply_symbol_compression(self, content):
# Symbol replacement for technical concepts
symbol_map = {
'authentication': '🔐 auth',
'performance': '⚡ perf',
'security': '🛡️ sec',
'leads to': '→',
'because': '∵'
}
compressed = content
for term, symbol in symbol_map.items():
compressed = compressed.replace(term, symbol)
return compressed
```
### Resource Constraint Handling
**Adaptive Scaling:**
```python
class AdaptiveScaler:
def handle_resource_constraints(self, current_load, available_resources):
scaling_strategies = {
'memory_pressure': [
self._enable_memory_compression,
self._reduce_context_window,
self._defer_non_critical_tasks
],
'cpu_pressure': [
self._reduce_parallel_operations,
self._optimize_computation_patterns,
self._enable_lazy_evaluation
],
'token_pressure': [
self._enable_compression_mode,
self._reduce_output_verbosity,
self._optimize_communication_patterns
]
}
pressure_type = self._identify_pressure_type(current_load, available_resources)
strategies = scaling_strategies.get(pressure_type, [])
for strategy in strategies:
if self._attempt_strategy(strategy):
break
```
**Performance Zones:**
```python
class PerformanceZoneManager:
ZONES = {
'green': { # 0-75% resource usage
'behavior': 'full_capability',
'mcp_servers': 'all_available',
'parallel_operations': 'unlimited',
'output_verbosity': 'full'
},
'yellow': { # 75-85% resource usage
'behavior': 'efficiency_mode',
'mcp_servers': 'essential_only',
'parallel_operations': 'limited',
'output_verbosity': 'reduced'
},
'red': { # 85%+ resource usage
'behavior': 'emergency_mode',
'mcp_servers': 'critical_only',
'parallel_operations': 'disabled',
'output_verbosity': 'minimal'
}
}
def adapt_to_zone(self, current_zone):
configuration = self.ZONES[current_zone]
return self._apply_zone_configuration(configuration)
```
## Agent Coordination
### 13-Agent Collaboration Architecture
**Agent Communication Protocol:**
```python
class AgentCommunicationProtocol:
def __init__(self):
self.agents = {
'system-architect': SystemArchitectAgent(),
'backend-architect': BackendArchitectAgent(),
'frontend-architect': FrontendArchitectAgent(),
'devops-architect': DevOpsArchitectAgent(),
'security-engineer': SecurityEngineerAgent(),
'performance-engineer': PerformanceEngineerAgent(),
'quality-engineer': QualityEngineerAgent(),
'refactoring-expert': RefactoringExpertAgent(),
'root-cause-analyst': RootCauseAnalystAgent(),
'python-expert': PythonExpertAgent(),
'requirements-analyst': RequirementsAnalystAgent(),
'technical-writer': TechnicalWriterAgent(),
'learning-guide': LearningGuideAgent()
}
def coordinate_agents(self, task, selected_agents):
coordination = AgentCoordination()
# Establish communication channels
for agent_id in selected_agents:
agent = self.agents[agent_id]
coordination.add_agent(agent, self._determine_role(agent, task))
# Define collaboration patterns
collaboration_pattern = self._design_collaboration(selected_agents, task)
coordination.set_pattern(collaboration_pattern)
return coordination
```
**Agent Specialization Matrix:**
```python
AGENT_CAPABILITIES = {
'system-architect': {
'primary_domains': ['architecture', 'system_design', 'scalability'],
'collaboration_style': 'strategic_lead',
'decision_authority': 'high',
'expertise_areas': ['microservices', 'distributed_systems', 'cloud_architecture']
},
'security-engineer': {
'primary_domains': ['security', 'compliance', 'threat_modeling'],
'collaboration_style': 'critical_reviewer',
'decision_authority': 'veto_power',
'expertise_areas': ['authentication', 'encryption', 'vulnerability_assessment']
},
'frontend-architect': {
'primary_domains': ['ui', 'ux', 'accessibility', 'performance'],
'collaboration_style': 'creative_contributor',
'decision_authority': 'domain_expert',
'expertise_areas': ['react', 'vue', 'accessibility', 'responsive_design']
}
}
```
### Inter-Agent Communication
**Message Passing System:**
```python
class AgentMessageBus:
def __init__(self):
self.message_queue = MessageQueue()
self.routing_table = RoutingTable()
def send_message(self, sender, recipient, message_type, payload):
message = AgentMessage(
sender=sender,
recipient=recipient,
type=message_type,
payload=payload,
timestamp=time.now()
)
self.message_queue.enqueue(message)
self._route_message(message)
def _route_message(self, message):
route = self.routing_table.get_route(message.sender, message.recipient)
for hop in route:
hop.process_message(message)
```
**Collaboration Patterns:**
```python
class CollaborationPatterns:
@staticmethod
def hierarchical_pattern(agents):
# Primary agent leads, others provide specialized input
primary = agents[0]
supporting = agents[1:]
return CollaborationStructure(
lead=primary,
supporters=supporting,
communication_flow='hub_and_spoke',
decision_making='lead_decides'
)
@staticmethod
def peer_to_peer_pattern(agents):
# Equal collaboration, consensus-based decisions
return CollaborationStructure(
participants=agents,
communication_flow='mesh',
decision_making='consensus'
)
@staticmethod
def pipeline_pattern(agents):
# Sequential processing, each agent builds on previous
return CollaborationStructure(
sequence=agents,
communication_flow='pipeline',
decision_making='sequential_refinement'
)
```
### Agent Lifecycle Management
**Agent Activation and Deactivation:**
```python
class AgentLifecycleManager:
def activate_agent(self, agent_id, task_context):
agent = self._get_agent(agent_id)
# Initialize agent with task context
agent.initialize(task_context)
# Establish connections with other active agents
active_agents = self._get_active_agents()
for other_agent in active_agents:
self._establish_connection(agent, other_agent)
# Register agent in coordination system
self.coordination_system.register_agent(agent)
def deactivate_agent(self, agent_id):
agent = self._get_agent(agent_id)
# Finalize agent work
agent.finalize()
# Cleanup connections
self._cleanup_connections(agent)
# Unregister from coordination system
self.coordination_system.unregister_agent(agent)
```
**Agent State Management:**
```python
class AgentStateManager:
def manage_agent_state(self, agent, task_progression):
current_state = agent.get_state()
state_transitions = {
'idle': ['activating', 'terminated'],
'activating': ['active', 'error'],
'active': ['collaborating', 'finalizing', 'error'],
'collaborating': ['active', 'finalizing'],
'finalizing': ['completed', 'error'],
'completed': ['idle', 'terminated'],
'error': ['recovering', 'terminated']
}
valid_transitions = state_transitions[current_state]
next_state = self._determine_next_state(task_progression, valid_transitions)
if next_state in valid_transitions:
agent.transition_to(next_state)
else:
raise InvalidStateTransition(current_state, next_state)
```
## MCP Integration
### MCP Server Architecture
**Server Connection Management:**
```python
class MCPConnectionManager:
def __init__(self):
self.servers = {
'context7': MCPServer('context7', 'documentation'),
'sequential': MCPServer('sequential', 'reasoning'),
'magic': MCPServer('magic', 'ui_generation'),
'playwright': MCPServer('playwright', 'browser_automation'),
'morphllm': MCPServer('morphllm', 'code_transformation'),
'serena': MCPServer('serena', 'semantic_analysis')
}
self.connection_pool = ConnectionPool(max_connections=10)
def connect_server(self, server_name, task_context):
server = self.servers[server_name]
connection = self.connection_pool.get_connection(server)
# Initialize server with task context
initialization_result = connection.initialize(task_context)
if initialization_result.success:
return MCPConnection(server, connection)
else:
raise MCPConnectionError(f"Failed to connect to {server_name}")
```
**Protocol Implementation:**
```python
class MCPProtocolHandler:
def handle_request(self, server, request):
# Format request according to MCP protocol
mcp_request = {
'jsonrpc': '2.0',
'id': self._generate_request_id(),
'method': request.method,
'params': request.params
}
# Send request and handle response
raw_response = server.send_request(mcp_request)
# Parse and validate response
response = self._parse_response(raw_response)
self._validate_response(response)
return MCPResponse(response)
```
### External Tool Coordination
**Multi-Server Orchestration:**
```python
class MCPOrchestrator:
def orchestrate_servers(self, task_requirements, available_servers):
# Analyze task requirements
server_needs = self._analyze_server_needs(task_requirements)
# Select optimal server combination
selected_servers = self._select_servers(server_needs, available_servers)
# Plan execution strategy
execution_plan = self._plan_execution(selected_servers, task_requirements)
# Coordinate execution
results = []
for step in execution_plan.steps:
if step.parallel:
step_results = self._execute_parallel(step.servers, step.requests)
else:
step_results = self._execute_sequential(step.servers, step.requests)
results.extend(step_results)
return OrchestrationResult(results)
```
**Server Capability Mapping:**
```python
MCP_SERVER_CAPABILITIES = {
'context7': {
'primary_functions': ['documentation_lookup', 'pattern_retrieval'],
'input_types': ['library_name', 'framework_query'],
'output_types': ['documentation', 'code_examples'],
'performance_profile': {'latency': 'low', 'throughput': 'high'},
'resource_requirements': {'memory': 'low', 'cpu': 'low'}
},
'sequential': {
'primary_functions': ['structured_reasoning', 'problem_decomposition'],
'input_types': ['complex_problem', 'analysis_request'],
'output_types': ['reasoning_chain', 'solution_steps'],
'performance_profile': {'latency': 'medium', 'throughput': 'medium'},
'resource_requirements': {'memory': 'medium', 'cpu': 'high'}
},
'magic': {
'primary_functions': ['ui_generation', 'component_creation'],
'input_types': ['ui_specification', 'design_requirements'],
'output_types': ['react_components', 'css_styles'],
'performance_profile': {'latency': 'medium', 'throughput': 'medium'},
'resource_requirements': {'memory': 'medium', 'cpu': 'medium'}
}
}
```
### Server Lifecycle Management
**Connection Pooling:**
```python
class MCPConnectionPool:
def __init__(self, max_connections_per_server=3):
self.pools = {}
self.max_connections = max_connections_per_server
def get_connection(self, server_name):
if server_name not in self.pools:
self.pools[server_name] = ServerConnectionPool(
server_name,
self.max_connections
)
return self.pools[server_name].acquire_connection()
def release_connection(self, server_name, connection):
pool = self.pools[server_name]
pool.release_connection(connection)
```
**Health Monitoring:**
```python
class MCPHealthMonitor:
def monitor_server_health(self, servers):
health_status = {}
for server_name, server in servers.items():
health_check = self._perform_health_check(server)
health_status[server_name] = {
'status': health_check.status,
'response_time': health_check.response_time,
'error_rate': health_check.error_rate,
'resource_usage': health_check.resource_usage
}
return HealthReport(health_status)
def _perform_health_check(self, server):
try:
start_time = time.time()
ping_response = server.ping()
response_time = time.time() - start_time
return HealthCheck(
status='healthy' if ping_response.success else 'unhealthy',
response_time=response_time,
error_rate=server.get_error_rate(),
resource_usage=server.get_resource_usage()
)
except Exception as e:
return HealthCheck(status='error', error=str(e))
```
## Configuration
### Component Management System
**Component Registry:**
```python
class ComponentRegistry:
def __init__(self, component_directory):
self.component_directory = Path(component_directory)
self.components = {}
self.dependency_graph = DependencyGraph()
def discover_components(self):
for component_file in self.component_directory.glob('**/*.py'):
component_class = self._load_component_class(component_file)
if self._is_valid_component(component_class):
component_id = component_class.get_id()
self.components[component_id] = component_class
self._register_dependencies(component_id, component_class)
def resolve_dependencies(self, requested_components):
# Topological sort for installation order
all_dependencies = set()
for component_id in requested_components:
dependencies = self._get_transitive_dependencies(component_id)
all_dependencies.update(dependencies)
return self.dependency_graph.topological_sort(all_dependencies)
```
**Dynamic Configuration System:**
```python
class ConfigurationManager:
def __init__(self):
self.config_sources = [
EnvironmentConfigSource(),
FileConfigSource('~/.claude/config.json'),
DefaultConfigSource()
]
self.config_cache = ConfigCache()
def get_configuration(self, key, context=None):
# Check cache first
cached_value = self.config_cache.get(key, context)
if cached_value is not None:
return cached_value
# Resolve from sources in priority order
for source in self.config_sources:
value = source.get(key, context)
if value is not None:
self.config_cache.set(key, value, context)
return value
raise ConfigurationNotFound(key)
```
### Environment Setup
**Installation Orchestration:**
```python
class InstallationOrchestrator:
def __init__(self):
self.validators = [
SystemCompatibilityValidator(),
DependencyValidator(),
PermissionValidator()
]
self.installers = {
'core': CoreInstaller(),
'mcp': MCPInstaller(),
'modes': ModesInstaller(),
'agents': AgentsInstaller()
}
def install_components(self, component_list, options):
# Pre-installation validation
validation_result = self._validate_environment(component_list)
if not validation_result.valid:
raise InstallationError(validation_result.errors)
# Resolve installation order
install_order = self._resolve_install_order(component_list)
# Execute installation
for component in install_order:
installer = self.installers[component.type]
result = installer.install(component, options)
if not result.success:
self._rollback_installation(component_list, component)
raise InstallationError(result.error)
```
**File Merge Logic:**
```python
class FileMergeManager:
def merge_instruction_files(self, existing_content, new_content, merge_strategy):
if merge_strategy == 'preserve_user':
return self._preserve_user_merge(existing_content, new_content)
elif merge_strategy == 'smart_merge':
return self._smart_merge(existing_content, new_content)
elif merge_strategy == 'overwrite':
return new_content
else:
raise UnsupportedMergeStrategy(merge_strategy)
def _preserve_user_merge(self, existing, new):
# Parse both contents
existing_sections = self._parse_sections(existing)
new_sections = self._parse_sections(new)
# Merge logic: preserve user modifications, add new sections
merged_sections = existing_sections.copy()
for section_name, section_content in new_sections.items():
if section_name not in existing_sections:
merged_sections[section_name] = section_content
else:
# Keep existing if modified, otherwise update
if not self._has_user_modifications(existing_sections[section_name]):
merged_sections[section_name] = section_content
return self._reconstruct_content(merged_sections)
```
### Deployment Patterns
**Multi-Environment Configuration:**
```python
class EnvironmentConfiguration:
ENVIRONMENTS = {
'development': {
'mcp_servers': 'all',
'logging_level': 'debug',
'performance_monitoring': 'detailed',
'resource_limits': 'relaxed'
},
'production': {
'mcp_servers': 'essential',
'logging_level': 'info',
'performance_monitoring': 'standard',
'resource_limits': 'strict'
},
'testing': {
'mcp_servers': 'mock',
'logging_level': 'debug',
'performance_monitoring': 'detailed',
'resource_limits': 'controlled'
}
}
def configure_for_environment(self, environment):
config = self.ENVIRONMENTS[environment]
return EnvironmentConfig(config)
```
**Backup and Recovery:**
```python
class BackupManager:
def create_backup(self, installation_target):
backup_id = self._generate_backup_id()
backup_path = self._get_backup_path(backup_id)
# Create comprehensive backup
backup_contents = {
'claude_md': self._backup_claude_md(installation_target),
'custom_files': self._backup_custom_files(installation_target),
'mcp_config': self._backup_mcp_config(installation_target),
'metadata': self._create_backup_metadata()
}
self._write_backup(backup_path, backup_contents)
return BackupInfo(backup_id, backup_path, backup_contents.keys())
def restore_backup(self, backup_id, installation_target):
backup_path = self._get_backup_path(backup_id)
backup_contents = self._read_backup(backup_path)
# Restore files with validation
for content_type, content_data in backup_contents.items():
self._restore_content(content_type, content_data, installation_target)
```
## Extensibility
### Plugin Architecture
**Component Extension Framework:**
```python
class BaseComponent:
"""Base class for all SuperClaude components"""
def get_metadata(self):
"""Return component metadata including dependencies"""
raise NotImplementedError
def get_dependencies(self):
"""Return list of required component dependencies"""
return []
def install(self, install_dir):
"""Install component to target directory"""
raise NotImplementedError
def validate_environment(self, install_dir):
"""Validate installation environment"""
return ValidationResult.SUCCESS
def get_component_files(self):
"""Return list of files to be installed"""
raise NotImplementedError
class CustomAgentComponent(BaseComponent):
"""Example custom agent component"""
def get_metadata(self):
return {
'name': 'custom_agent',
'description': 'Custom domain specialist agent',
'version': '1.0.0',
'dependencies': ['core']
}
def install(self, install_dir):
agent_file = install_dir / 'AGENT_CustomSpecialist.md'
self._write_agent_definition(agent_file)
# Register agent in system
self._register_agent('custom-specialist', {
'triggers': ['custom', 'specialist'],
'capabilities': ['domain_analysis'],
'expertise_level': 0.9
})
```
**Custom MCP Server Integration:**
```python
class CustomMCPComponent(BaseComponent):
"""Framework for integrating custom MCP servers"""
def __init__(self, server_name, server_config):
self.server_name = server_name
self.server_config = server_config
def install(self, install_dir):
# Add server to MCP configuration
mcp_config_path = install_dir / '.claude.json'
mcp_config = self._load_mcp_config(mcp_config_path)
mcp_config['mcpServers'][self.server_name] = {
'command': self.server_config['command'],
'args': self.server_config['args'],
'env': self.server_config.get('env', {})
}
self._save_mcp_config(mcp_config_path, mcp_config)
# Create server instruction file
server_instruction_file = install_dir / f'MCP_{self.server_name}.md'
self._write_server_instructions(server_instruction_file)
```
### API Interfaces
**Agent Development API:**
```python
class AgentAPI:
"""API for developing custom agents"""
@staticmethod
def register_agent(agent_id, agent_config):
"""Register a new agent with the system"""
agent_registry = AgentRegistry()
agent_registry.register(agent_id, agent_config)
@staticmethod
def define_triggers(agent_id, triggers):
"""Define activation triggers for agent"""
trigger_system = TriggerSystem()
trigger_system.register_triggers(agent_id, triggers)
@staticmethod
def set_capabilities(agent_id, capabilities):
"""Define agent capabilities and expertise areas"""
capability_system = CapabilitySystem()
capability_system.register_capabilities(agent_id, capabilities)
# Example usage
AgentAPI.register_agent('data-scientist', {
'domain': 'data_science',
'expertise_level': 0.95,
'collaboration_style': 'analytical_contributor'
})
AgentAPI.define_triggers('data-scientist', [
'data analysis', 'machine learning', 'statistics',
'pandas', 'numpy', 'scikit-learn'
])
AgentAPI.set_capabilities('data-scientist', [
'data_analysis', 'model_development', 'statistical_analysis',
'data_visualization', 'feature_engineering'
])
```
**MCP Integration API:**
```python
class MCPIntegrationAPI:
"""API for integrating custom MCP servers"""
@staticmethod
def register_server(server_name, server_config):
"""Register a new MCP server"""
mcp_registry = MCPRegistry()
mcp_registry.register_server(server_name, server_config)
@staticmethod
def define_capabilities(server_name, capabilities):
"""Define server capabilities and triggers"""
capability_registry = MCPCapabilityRegistry()
capability_registry.register_capabilities(server_name, capabilities)
@staticmethod
def set_activation_rules(server_name, rules):
"""Define when server should be activated"""
activation_system = ActivationSystem()
activation_system.register_rules(server_name, rules)
# Example usage
MCPIntegrationAPI.register_server('database-analyzer', {
'command': 'node',
'args': ['/path/to/database-analyzer-server.js'],
'capabilities': ['query_optimization', 'schema_analysis']
})
MCPIntegrationAPI.define_capabilities('database-analyzer', {
'primary_functions': ['sql_optimization', 'index_analysis'],
'input_types': ['sql_query', 'database_schema'],
'output_types': ['optimization_suggestions', 'performance_analysis']
})
```
### Extension Points
**Custom Behavioral Modes:**
```python
class CustomModeExtension:
"""Framework for creating custom behavioral modes"""
def __init__(self, mode_name, mode_config):
self.mode_name = mode_name
self.mode_config = mode_config
def create_mode_file(self, install_dir):
mode_file = install_dir / f'MODE_{self.mode_name}.md'
mode_content = self._generate_mode_content({
'purpose': self.mode_config['purpose'],
'activation_triggers': self.mode_config['triggers'],
'behavioral_changes': self.mode_config['behaviors'],
'outcomes': self.mode_config['outcomes'],
'examples': self.mode_config['examples']
})
mode_file.write_text(mode_content)
def register_mode(self):
mode_registry = ModeRegistry()
mode_registry.register_mode(self.mode_name, {
'triggers': self.mode_config['triggers'],
'priority': self.mode_config.get('priority', 'standard'),
'compatibility': self.mode_config.get('compatibility', [])
})
# Example: Creating a "research" behavioral mode
research_mode = CustomModeExtension('Research', {
'purpose': 'Deep academic and technical research with citation management',
'triggers': ['research', 'academic', 'study', 'investigate'],
'behaviors': [
'Systematic information gathering',
'Source validation and citation',
'Evidence-based reasoning',
'Academic writing style'
],
'outcomes': [
'Comprehensive research reports',
'Properly cited sources',
'Academic-quality analysis'
],
'examples': [
'Literature review generation',
'Technical research synthesis',
'Comparative analysis with citations'
]
})
```
**Command Extension Framework:**
```python
class CustomCommandExtension:
"""Framework for creating custom slash commands"""
def __init__(self, command_name, command_config):
self.command_name = command_name
self.command_config = command_config
def register_command(self):
command_registry = CommandRegistry()
command_registry.register_command(f'/sc:{self.command_name}', {
'handler': self.command_config['handler'],
'description': self.command_config['description'],
'flags': self.command_config.get('flags', []),
'auto_activation': self.command_config.get('auto_activation', {}),
'required_capabilities': self.command_config.get('capabilities', [])
})
def create_command_documentation(self, install_dir):
doc_file = install_dir / f'COMMAND_{self.command_name}.md'
doc_content = self._generate_command_docs({
'name': self.command_name,
'purpose': self.command_config['purpose'],
'usage': self.command_config['usage'],
'examples': self.command_config['examples'],
'integration': self.command_config.get('integration', {})
})
doc_file.write_text(doc_content)
# Example: Creating a "validate" command
validate_command = CustomCommandExtension('validate', {
'purpose': 'Comprehensive code and system validation',
'handler': 'ValidationCommandHandler',
'description': 'Multi-layer validation including security, performance, and quality',
'usage': [
'/sc:validate codebase/',
'/sc:validate --focus security auth-system/',
'/sc:validate --comprehensive --report project/'
],
'flags': ['focus', 'comprehensive', 'report', 'fix'],
'capabilities': ['code_analysis', 'security_scanning', 'performance_testing'],
'examples': [
'Security validation workflow',
'Performance validation and optimization',
'Quality gate validation for CI/CD'
]
})
```
## Technical Reference
### API Specifications
**Core Framework APIs:**
```python
# Component Management API
class ComponentManager:
def install_component(self, component_id: str, options: InstallOptions) -> InstallResult
def uninstall_component(self, component_id: str) -> UninstallResult
def list_components(self) -> List[ComponentInfo]
def get_component_status(self, component_id: str) -> ComponentStatus
def update_component(self, component_id: str, version: str) -> UpdateResult
# Agent Management API
class AgentManager:
def register_agent(self, agent_id: str, config: AgentConfig) -> RegistrationResult
def activate_agents(self, agent_ids: List[str], context: TaskContext) -> ActivationResult
def deactivate_agents(self, agent_ids: List[str]) -> DeactivationResult
def get_agent_status(self, agent_id: str) -> AgentStatus
def configure_agent_coordination(self, agents: List[str], pattern: str) -> CoordinationResult
# MCP Integration API
class MCPManager:
def register_server(self, server_name: str, config: MCPServerConfig) -> RegistrationResult
def connect_server(self, server_name: str, context: ConnectionContext) -> MCPConnection
def disconnect_server(self, server_name: str) -> DisconnectionResult
def get_server_health(self, server_name: str) -> HealthStatus
def execute_mcp_request(self, server: str, request: MCPRequest) -> MCPResponse
```
**Task Execution APIs:**
```python
# Task Management API
class TaskManager:
def create_task(self, task_spec: TaskSpecification) -> Task
def execute_task(self, task: Task, options: ExecutionOptions) -> TaskResult
def monitor_task(self, task_id: str) -> TaskStatus
def cancel_task(self, task_id: str) -> CancellationResult
def get_task_history(self, filters: TaskFilters) -> List[TaskHistory]
# Quality Management API
class QualityManager:
def validate_task(self, task: Task, criteria: ValidationCriteria) -> ValidationResult
def apply_quality_gates(self, task_result: TaskResult) -> QualityGateResult
def measure_quality(self, output: TaskOutput) -> QualityMetrics
def generate_quality_report(self, task_id: str) -> QualityReport
```
### Integration Patterns
**Event-Driven Architecture:**
```python
class EventBus:
"""Central event bus for component communication"""
def subscribe(self, event_type: str, handler: Callable) -> Subscription
def unsubscribe(self, subscription: Subscription) -> None
def publish(self, event: Event) -> PublishResult
def get_event_history(self, filters: EventFilters) -> List[Event]
# Event types
class EventTypes:
TASK_STARTED = "task.started"
TASK_COMPLETED = "task.completed"
AGENT_ACTIVATED = "agent.activated"
MCP_SERVER_CONNECTED = "mcp.server.connected"
QUALITY_GATE_FAILED = "quality.gate.failed"
PERFORMANCE_THRESHOLD_EXCEEDED = "performance.threshold.exceeded"
# Example event handler
def handle_task_completion(event: TaskCompletedEvent):
task_result = event.result
quality_metrics = quality_manager.measure_quality(task_result.output)
if quality_metrics.overall_score < 0.8:
event_bus.publish(QualityGateFailedEvent(task_result.task_id, quality_metrics))
```
**Plugin Integration Pattern:**
```python
class PluginManager:
"""Manages external plugins and extensions"""
def __init__(self):
self.plugins = {}
self.plugin_loader = PluginLoader()
self.dependency_resolver = DependencyResolver()
def load_plugin(self, plugin_path: Path) -> PluginLoadResult:
plugin_spec = self.plugin_loader.load_spec(plugin_path)
dependencies = self.dependency_resolver.resolve(plugin_spec.dependencies)
if dependencies.resolvable:
plugin = self.plugin_loader.instantiate(plugin_spec)
plugin.initialize(self._create_plugin_context())
self.plugins[plugin_spec.id] = plugin
return PluginLoadResult.SUCCESS
else:
return PluginLoadResult.DEPENDENCY_ERROR
class Plugin:
"""Base class for SuperClaude plugins"""
def get_manifest(self) -> PluginManifest:
"""Return plugin metadata and capabilities"""
raise NotImplementedError
def initialize(self, context: PluginContext) -> InitializationResult:
"""Initialize plugin with system context"""
raise NotImplementedError
def shutdown(self) -> ShutdownResult:
"""Clean shutdown of plugin"""
raise NotImplementedError
```
### Implementation Details
**Memory Management:**
```python
class MemoryManager:
"""Manages system memory and context preservation"""
def __init__(self):
self.context_cache = LRUCache(max_size=1000)
self.session_storage = SessionStorage()
self.memory_compressor = MemoryCompressor()
def store_context(self, session_id: str, context: SessionContext) -> StorageResult:
# Compress context if needed
if context.size > self.memory_threshold:
compressed_context = self.memory_compressor.compress(context)
return self.session_storage.store(session_id, compressed_context)
else:
return self.session_storage.store(session_id, context)
def retrieve_context(self, session_id: str) -> SessionContext:
stored_context = self.session_storage.retrieve(session_id)
if stored_context.compressed:
return self.memory_compressor.decompress(stored_context)
else:
return stored_context
```
**Performance Monitoring:**
```python
class PerformanceMonitor:
"""Real-time system performance monitoring"""
def __init__(self):
self.metrics_collector = MetricsCollector()
self.alert_system = AlertSystem()
self.performance_analyzer = PerformanceAnalyzer()
def start_monitoring(self, components: List[str]):
for component in components:
self.metrics_collector.start_collection(component)
def analyze_performance(self) -> PerformanceAnalysis:
metrics = self.metrics_collector.get_recent_metrics()
analysis = self.performance_analyzer.analyze(metrics)
# Trigger alerts if needed
for alert in analysis.alerts:
self.alert_system.trigger_alert(alert)
return analysis
```
### Debugging and Troubleshooting
**Debug Information System:**
```python
class DebugManager:
"""Comprehensive debugging and diagnostic system"""
def enable_debug_mode(self, level: DebugLevel = DebugLevel.STANDARD):
self.debug_level = level
self.debug_logger = DebugLogger(level)
self.trace_collector = TraceCollector()
def collect_system_state(self) -> SystemState:
return SystemState(
agents=self._get_agent_states(),
mcp_servers=self._get_mcp_states(),
tasks=self._get_task_states(),
performance=self._get_performance_state(),
configuration=self._get_configuration_state()
)
def generate_diagnostic_report(self, issue_description: str) -> DiagnosticReport:
system_state = self.collect_system_state()
error_logs = self.debug_logger.get_recent_errors()
performance_metrics = self.performance_monitor.get_metrics()
return DiagnosticReport(
issue=issue_description,
system_state=system_state,
error_logs=error_logs,
performance_metrics=performance_metrics,
recommendations=self._generate_recommendations(system_state, error_logs)
)
```
**Error Recovery System:**
```python
class ErrorRecoveryManager:
"""Automated error detection and recovery"""
def __init__(self):
self.recovery_strategies = {
'mcp_connection_failed': self._recover_mcp_connection,
'agent_activation_failed': self._recover_agent_activation,
'resource_exhaustion': self._recover_resource_exhaustion,
'quality_gate_failed': self._recover_quality_failure
}
def handle_error(self, error: SystemError) -> RecoveryResult:
error_type = self._classify_error(error)
if error_type in self.recovery_strategies:
recovery_strategy = self.recovery_strategies[error_type]
return recovery_strategy(error)
else:
return self._fallback_recovery(error)
def _recover_mcp_connection(self, error: MCPConnectionError) -> RecoveryResult:
# Attempt reconnection with backoff
server_name = error.server_name
max_retries = 3
for attempt in range(max_retries):
try:
connection = self.mcp_manager.reconnect_server(server_name)
return RecoveryResult.SUCCESS
except Exception:
time.sleep(2 ** attempt) # Exponential backoff
return RecoveryResult.FAILED
```
**System Health Monitoring:**
```python
class HealthMonitor:
"""Continuous system health monitoring and reporting"""
def __init__(self):
self.health_checks = [
ComponentHealthCheck(),
AgentHealthCheck(),
MCPServerHealthCheck(),
PerformanceHealthCheck(),
MemoryHealthCheck()
]
def perform_health_check(self) -> HealthReport:
check_results = []
for health_check in self.health_checks:
try:
result = health_check.check()
check_results.append(result)
except Exception as e:
check_results.append(HealthCheckResult.ERROR(str(e)))
overall_health = self._calculate_overall_health(check_results)
return HealthReport(
overall_health=overall_health,
individual_results=check_results,
recommendations=self._generate_health_recommendations(check_results)
)
```