# SuperClaude Technical Architecture Guide 🏗️ ## Overview This technical architecture guide documents SuperClaude Framework's V4 orchestrator system - a sophisticated meta-programming framework that transforms Claude Code into a structured development platform through behavioral instruction injection and intelligent component orchestration. **Target Audience**: Framework developers, system architects, contributors, and advanced users requiring deep technical understanding of SuperClaude's internal architecture and extension patterns. **Architecture Philosophy**: SuperClaude operates as a **meta-framework** that enhances Claude Code through configuration-driven behavioral programming, intelligent task routing, and dynamic tool coordination rather than replacing core functionality. ## Table of Contents 1. [Architecture Overview](#architecture-overview) - Multi-layered orchestration pattern 2. [Detection Engine](#detection-engine) - Intelligent task classification and context analysis 3. [Routing Intelligence](#routing-intelligence) - Agent selection and resource allocation 4. [Quality Framework](#quality-framework) - Validation systems and quality gates 5. [Performance System](#performance-system) - Optimization and resource management 6. [Agent Coordination](#agent-coordination) - 13-agent collaboration architecture 7. [MCP Integration](#mcp-integration) - External tool coordination protocols 8. [Configuration](#configuration) - Component management and system customization 9. [Extensibility](#extensibility) - Plugin architecture and extension patterns 10. [Technical Reference](#technical-reference) - API specifications and implementation details --- ## Architecture Overview ### System Design Principles **Meta-Framework Architecture**: SuperClaude enhances Claude Code through instruction injection rather than code modification, maintaining compatibility while adding sophisticated orchestration capabilities. **Configuration-Driven Behavior**: Behavioral programming through structured `.md` files enables AI behavior modification without code changes, providing unprecedented flexibility in AI system customization. **Intelligent Orchestration**: Dynamic coordination of specialized agents, MCP servers, and behavioral modes based on context analysis and task complexity detection. ### Core Components ``` ┌─ User Interface Layer ──────────────────────────────┐ │ • Slash Commands (/sc:*) │ │ • Natural Language Processing │ │ • Flag-based Modifiers │ └─────────────────────────────────────────────────────┘ │ ┌─ Detection & Routing Engine ────────────────────────┐ │ • Context Analysis │ │ • Task Classification │ │ • Complexity Scoring │ │ • Resource Assessment │ └─────────────────────────────────────────────────────┘ │ ┌─ Orchestration Layer ───────────────────────────────┐ │ • Agent Selection & Coordination │ │ • MCP Server Activation │ │ • Behavioral Mode Management │ │ • Tool Integration │ └─────────────────────────────────────────────────────┘ │ ┌─ Execution Framework ───────────────────────────────┐ │ • Task Management & Delegation │ │ • Quality Gates & Validation │ │ • Progress Tracking │ │ • Session Management │ └─────────────────────────────────────────────────────┘ │ ┌─ Foundation Layer ──────────────────────────────────┐ │ • Claude Code Integration │ │ • Configuration Management │ │ • Component System │ │ • Memory & Persistence │ └─────────────────────────────────────────────────────┘ ``` ### Multi-Layered Orchestration Pattern **Layer 1: Detection & Analysis** - Intent parsing and context analysis - Task complexity assessment and resource evaluation - Pattern recognition and trigger detection **Layer 2: Planning & Routing** - Agent selection based on domain expertise - MCP server activation for enhanced capabilities - Behavioral mode selection for optimal communication - Resource allocation and load balancing **Layer 3: Coordination & Execution** - Multi-agent collaboration and communication - Tool integration and workflow orchestration - Progress monitoring and quality validation - Session persistence and context management **Layer 4: Quality & Optimization** - Continuous quality assessment and improvement - Performance monitoring and optimization - Learning and adaptation based on outcomes - Feedback integration and system evolution ## Detection Engine ### Intelligent Task Classification **Context Analysis Pipeline:** ```python class TaskDetectionEngine: def analyze_request(self, user_input, context): analysis = { 'intent': self._extract_intent(user_input), 'complexity': self._assess_complexity(context), 'domain': self._identify_domain(user_input, context), 'scope': self._determine_scope(context), 'resources': self._evaluate_resources(context) } return self._classify_task(analysis) ``` **Pattern Recognition System:** **Keyword-Based Detection:** ```python TRIGGER_PATTERNS = { 'brainstorming': ['brainstorm', 'explore', 'maybe', 'not sure', 'thinking about'], 'security': ['auth', 'security', 'vulnerability', 'encryption', 'compliance'], 'ui_generation': ['component', 'UI', 'interface', 'dashboard', 'responsive'], 'performance': ['slow', 'optimization', 'bottleneck', 'latency', 'performance'], 'architecture': ['design', 'architecture', 'microservices', 'scalability'] } ``` **File Type Analysis:** ```python FILE_TYPE_ROUTING = { '.jsx': ['frontend-architect', 'magic-mcp'], '.py': ['python-expert', 'backend-architect'], '.ts': ['frontend-architect', 'backend-architect'], '.sql': ['backend-architect', 'performance-engineer'], '.md': ['technical-writer', 'documentation-specialist'] } ``` **Complexity Scoring Algorithm:** ```python def calculate_complexity_score(context): score = 0 # File scope analysis if context.file_count > 10: score += 0.3 if context.directory_count > 3: score += 0.2 # Code analysis if context.lines_of_code > 1000: score += 0.2 if context.dependencies > 5: score += 0.1 # Task characteristics if context.involves_multiple_domains: score += 0.3 if context.requires_coordination: score += 0.2 return min(score, 1.0) # Cap at 1.0 ``` ### Auto-Activation Mechanisms **Behavioral Mode Triggers:** ```python class ModeDetection: def detect_mode(self, task_analysis): modes = [] if task_analysis.complexity > 0.7: modes.append('task-management') if task_analysis.uncertainty > 0.6: modes.append('brainstorming') if task_analysis.requires_tools > 3: modes.append('orchestration') if task_analysis.resource_pressure > 0.75: modes.append('token-efficiency') return modes ``` **Agent Selection Logic:** ```python class AgentSelector: def select_agents(self, task_analysis): agents = [] # Domain-based selection if 'security' in task_analysis.keywords: agents.append('security-engineer') if task_analysis.involves_ui: agents.append('frontend-architect') # Complexity-based selection if task_analysis.complexity > 0.8: agents.append('system-architect') # Quality requirements if task_analysis.quality_critical: agents.append('quality-engineer') return agents ``` **MCP Server Activation:** ```python class MCPActivation: def determine_mcp_servers(self, task_analysis): servers = [] # Documentation needs if task_analysis.needs_documentation: servers.append('context7') # Complex reasoning if task_analysis.complexity > 0.6: servers.append('sequential') # UI development if task_analysis.domain == 'frontend': servers.append('magic') # Browser testing if 'testing' in task_analysis.keywords: servers.append('playwright') return servers ``` ## Routing Intelligence ### Dynamic Resource Allocation **Orchestration Decision Matrix:** ```python class ResourceOrchestrator: def allocate_resources(self, task_analysis, available_resources): allocation = { 'agents': self._select_optimal_agents(task_analysis), 'mcp_servers': self._choose_mcp_servers(task_analysis), 'behavioral_modes': self._activate_modes(task_analysis), 'resource_limits': self._calculate_limits(available_resources) } return self._optimize_allocation(allocation) ``` **Load Balancing Strategy:** ```python class LoadBalancer: def balance_workload(self, tasks, resources): # Resource capacity assessment capacity = self._assess_resource_capacity() # Task priority and dependency analysis prioritized_tasks = self._prioritize_tasks(tasks) # Optimal distribution algorithm distribution = {} for task in prioritized_tasks: best_resource = self._find_best_resource(task, capacity) distribution[task.id] = best_resource capacity[best_resource] -= task.resource_requirement return distribution ``` ### Agent Coordination Protocols **Multi-Agent Communication:** ```python class AgentCoordinator: def coordinate_agents(self, selected_agents, task_context): coordination_plan = { 'primary_agent': self._select_primary(selected_agents, task_context), 'supporting_agents': self._organize_support(selected_agents), 'communication_flow': self._design_flow(selected_agents), 'decision_hierarchy': self._establish_hierarchy(selected_agents) } return coordination_plan ``` **Specialization Routing:** ```python AGENT_SPECIALIZATIONS = { 'system-architect': { 'triggers': ['architecture', 'design', 'scalability'], 'capabilities': ['system_design', 'technology_selection'], 'coordination_priority': 'high', 'domain_expertise': 0.9 }, 'security-engineer': { 'triggers': ['security', 'auth', 'vulnerability'], 'capabilities': ['threat_modeling', 'security_review'], 'coordination_priority': 'critical', 'domain_expertise': 0.95 } } ``` ### Tool Integration Optimization **MCP Server Selection Algorithm:** ```python class MCPSelector: def optimize_server_selection(self, task_requirements): # Capability mapping server_capabilities = self._map_capabilities() # Performance metrics server_performance = self._get_performance_metrics() # Cost-benefit analysis optimal_set = [] for requirement in task_requirements: candidates = self._find_capable_servers(requirement) best_server = self._select_best(candidates, server_performance) optimal_set.append(best_server) return self._deduplicate_and_optimize(optimal_set) ``` **Parallel Execution Planning:** ```python class ParallelPlanner: def plan_parallel_execution(self, tasks, dependencies): # Dependency graph analysis dependency_graph = self._build_dependency_graph(tasks, dependencies) # Parallel execution opportunities parallel_groups = self._identify_parallel_groups(dependency_graph) # Resource allocation for parallel tasks execution_plan = [] for group in parallel_groups: resources = self._allocate_group_resources(group) execution_plan.append({ 'tasks': group, 'resources': resources, 'execution_mode': 'parallel' }) return execution_plan ``` ### Performance Optimization **Resource Constraint Handling:** ```python class ConstraintManager: def handle_constraints(self, resource_request, available_resources): if self._exceeds_capacity(resource_request, available_resources): # Adaptive scaling strategies strategies = [ self._reduce_scope, self._enable_compression, self._defer_non_critical, self._optimize_tool_selection ] for strategy in strategies: adjusted_request = strategy(resource_request) if self._fits_capacity(adjusted_request, available_resources): return adjusted_request return resource_request ``` **Adaptive Performance Tuning:** ```python class PerformanceTuner: def tune_performance(self, execution_metrics): # Performance analysis bottlenecks = self._identify_bottlenecks(execution_metrics) # Optimization recommendations optimizations = [] for bottleneck in bottlenecks: if bottleneck.type == 'memory': optimizations.append(self._suggest_memory_optimization()) elif bottleneck.type == 'cpu': optimizations.append(self._suggest_cpu_optimization()) elif bottleneck.type == 'io': optimizations.append(self._suggest_io_optimization()) return optimizations ``` ## Quality Framework ### Validation Systems **Multi-Layer Quality Gates:** ```python class QualityGateSystem: def __init__(self): self.gates = [ PreExecutionGate(), # Input validation and risk assessment ExecutionGate(), # Real-time quality monitoring PostExecutionGate(), # Output validation and completeness IntegrationGate() # System integration validation ] def validate(self, task, context, output): for gate in self.gates: result = gate.evaluate(task, context, output) if not result.passes: return self._handle_quality_failure(result, gate) return QualityResult.PASSED ``` **Risk Assessment Engine:** ```python class RiskAssessment: def assess_risk(self, task_context): risk_factors = { 'complexity': self._assess_complexity_risk(task_context), 'scope': self._assess_scope_risk(task_context), 'resources': self._assess_resource_risk(task_context), 'dependencies': self._assess_dependency_risk(task_context), 'criticality': self._assess_criticality_risk(task_context) } overall_risk = self._calculate_weighted_risk(risk_factors) return RiskProfile(overall_risk, risk_factors) ``` ### Quality Metrics **Comprehensive Quality Measurement:** ```python class QualityMetrics: def measure_quality(self, execution_result): metrics = { 'correctness': self._measure_correctness(execution_result), 'completeness': self._measure_completeness(execution_result), 'performance': self._measure_performance(execution_result), 'maintainability': self._measure_maintainability(execution_result), 'security': self._measure_security(execution_result), 'usability': self._measure_usability(execution_result) } return QualityScore( overall=self._calculate_overall_score(metrics), detailed=metrics ) ``` **Continuous Quality Monitoring:** ```python class QualityMonitor: def monitor_execution(self, task_execution): quality_checks = [ self._check_progress_quality(), self._check_resource_utilization(), self._check_error_rates(), self._check_performance_degradation(), self._check_output_quality() ] for check in quality_checks: if check.indicates_quality_issue(): self._trigger_corrective_action(check) ``` ### Validation Criteria **Domain-Specific Validation:** ```python VALIDATION_CRITERIA = { 'security': { 'required_checks': ['input_sanitization', 'authorization', 'encryption'], 'quality_threshold': 0.95, 'critical_failures': ['security_vulnerabilities', 'data_exposure'] }, 'performance': { 'required_metrics': ['response_time', 'memory_usage', 'cpu_utilization'], 'quality_threshold': 0.85, 'performance_targets': {'response_time': '<2s', 'memory': '<1GB'} }, 'frontend': { 'required_checks': ['accessibility', 'responsiveness', 'browser_compatibility'], 'quality_threshold': 0.90, 'accessibility_compliance': 'WCAG_2.1_AA' } } ``` **Testing Framework Integration:** ```python class TestingFramework: def integrate_testing(self, task_result): test_suite = self._generate_test_suite(task_result) # Automated testing unit_results = self._run_unit_tests(test_suite) integration_results = self._run_integration_tests(test_suite) # Quality validation if task_result.domain == 'frontend': ui_results = self._run_ui_tests(test_suite) accessibility_results = self._run_accessibility_tests(test_suite) return TestResults(unit_results, integration_results, ui_results) ``` ## Performance System ### Resource Management **Dynamic Resource Allocation:** ```python class ResourceManager: def __init__(self): self.resource_pools = { 'memory': MemoryPool(capacity='8GB'), 'cpu': CPUPool(cores=8), 'mcp_connections': MCPPool(max_connections=6), 'token_budget': TokenPool(limit=128000) } def allocate_resources(self, task_requirements): allocation = {} for resource_type, requirement in task_requirements.items(): pool = self.resource_pools[resource_type] allocation[resource_type] = pool.allocate(requirement) return ResourceAllocation(allocation) ``` **Performance Monitoring:** ```python class PerformanceMonitor: def monitor_system_performance(self): metrics = { 'response_time': self._measure_response_time(), 'throughput': self._measure_throughput(), 'resource_utilization': self._measure_resource_usage(), 'error_rate': self._measure_error_rate(), 'mcp_performance': self._measure_mcp_performance() } # Performance alerts if self._detect_performance_degradation(metrics): self._trigger_performance_optimization(metrics) return PerformanceReport(metrics) ``` ### Optimization Algorithms **Efficiency Optimization Engine:** ```python class EfficiencyOptimizer: def optimize_execution(self, task_plan): optimizations = [ self._optimize_parallel_execution(task_plan), self._optimize_tool_selection(task_plan), self._optimize_resource_allocation(task_plan), self._optimize_communication_patterns(task_plan) ] optimized_plan = task_plan for optimization in optimizations: optimized_plan = optimization.apply(optimized_plan) return optimized_plan ``` **Token Efficiency System:** ```python class TokenEfficiencyManager: def optimize_token_usage(self, context, output_requirements): # Compression strategies compression_level = self._determine_compression_level(context) if compression_level == 'high': return self._apply_symbol_compression(output_requirements) elif compression_level == 'medium': return self._apply_structural_compression(output_requirements) else: return output_requirements # No compression needed def _apply_symbol_compression(self, content): # Symbol replacement for technical concepts symbol_map = { 'authentication': '🔐 auth', 'performance': '⚡ perf', 'security': '🛡️ sec', 'leads to': '→', 'because': '∵' } compressed = content for term, symbol in symbol_map.items(): compressed = compressed.replace(term, symbol) return compressed ``` ### Resource Constraint Handling **Adaptive Scaling:** ```python class AdaptiveScaler: def handle_resource_constraints(self, current_load, available_resources): scaling_strategies = { 'memory_pressure': [ self._enable_memory_compression, self._reduce_context_window, self._defer_non_critical_tasks ], 'cpu_pressure': [ self._reduce_parallel_operations, self._optimize_computation_patterns, self._enable_lazy_evaluation ], 'token_pressure': [ self._enable_compression_mode, self._reduce_output_verbosity, self._optimize_communication_patterns ] } pressure_type = self._identify_pressure_type(current_load, available_resources) strategies = scaling_strategies.get(pressure_type, []) for strategy in strategies: if self._attempt_strategy(strategy): break ``` **Performance Zones:** ```python class PerformanceZoneManager: ZONES = { 'green': { # 0-75% resource usage 'behavior': 'full_capability', 'mcp_servers': 'all_available', 'parallel_operations': 'unlimited', 'output_verbosity': 'full' }, 'yellow': { # 75-85% resource usage 'behavior': 'efficiency_mode', 'mcp_servers': 'essential_only', 'parallel_operations': 'limited', 'output_verbosity': 'reduced' }, 'red': { # 85%+ resource usage 'behavior': 'emergency_mode', 'mcp_servers': 'critical_only', 'parallel_operations': 'disabled', 'output_verbosity': 'minimal' } } def adapt_to_zone(self, current_zone): configuration = self.ZONES[current_zone] return self._apply_zone_configuration(configuration) ``` ## Agent Coordination ### 13-Agent Collaboration Architecture **Agent Communication Protocol:** ```python class AgentCommunicationProtocol: def __init__(self): self.agents = { 'system-architect': SystemArchitectAgent(), 'backend-architect': BackendArchitectAgent(), 'frontend-architect': FrontendArchitectAgent(), 'devops-architect': DevOpsArchitectAgent(), 'security-engineer': SecurityEngineerAgent(), 'performance-engineer': PerformanceEngineerAgent(), 'quality-engineer': QualityEngineerAgent(), 'refactoring-expert': RefactoringExpertAgent(), 'root-cause-analyst': RootCauseAnalystAgent(), 'python-expert': PythonExpertAgent(), 'requirements-analyst': RequirementsAnalystAgent(), 'technical-writer': TechnicalWriterAgent(), 'learning-guide': LearningGuideAgent() } def coordinate_agents(self, task, selected_agents): coordination = AgentCoordination() # Establish communication channels for agent_id in selected_agents: agent = self.agents[agent_id] coordination.add_agent(agent, self._determine_role(agent, task)) # Define collaboration patterns collaboration_pattern = self._design_collaboration(selected_agents, task) coordination.set_pattern(collaboration_pattern) return coordination ``` **Agent Specialization Matrix:** ```python AGENT_CAPABILITIES = { 'system-architect': { 'primary_domains': ['architecture', 'system_design', 'scalability'], 'collaboration_style': 'strategic_lead', 'decision_authority': 'high', 'expertise_areas': ['microservices', 'distributed_systems', 'cloud_architecture'] }, 'security-engineer': { 'primary_domains': ['security', 'compliance', 'threat_modeling'], 'collaboration_style': 'critical_reviewer', 'decision_authority': 'veto_power', 'expertise_areas': ['authentication', 'encryption', 'vulnerability_assessment'] }, 'frontend-architect': { 'primary_domains': ['ui', 'ux', 'accessibility', 'performance'], 'collaboration_style': 'creative_contributor', 'decision_authority': 'domain_expert', 'expertise_areas': ['react', 'vue', 'accessibility', 'responsive_design'] } } ``` ### Inter-Agent Communication **Message Passing System:** ```python class AgentMessageBus: def __init__(self): self.message_queue = MessageQueue() self.routing_table = RoutingTable() def send_message(self, sender, recipient, message_type, payload): message = AgentMessage( sender=sender, recipient=recipient, type=message_type, payload=payload, timestamp=time.now() ) self.message_queue.enqueue(message) self._route_message(message) def _route_message(self, message): route = self.routing_table.get_route(message.sender, message.recipient) for hop in route: hop.process_message(message) ``` **Collaboration Patterns:** ```python class CollaborationPatterns: @staticmethod def hierarchical_pattern(agents): # Primary agent leads, others provide specialized input primary = agents[0] supporting = agents[1:] return CollaborationStructure( lead=primary, supporters=supporting, communication_flow='hub_and_spoke', decision_making='lead_decides' ) @staticmethod def peer_to_peer_pattern(agents): # Equal collaboration, consensus-based decisions return CollaborationStructure( participants=agents, communication_flow='mesh', decision_making='consensus' ) @staticmethod def pipeline_pattern(agents): # Sequential processing, each agent builds on previous return CollaborationStructure( sequence=agents, communication_flow='pipeline', decision_making='sequential_refinement' ) ``` ### Agent Lifecycle Management **Agent Activation and Deactivation:** ```python class AgentLifecycleManager: def activate_agent(self, agent_id, task_context): agent = self._get_agent(agent_id) # Initialize agent with task context agent.initialize(task_context) # Establish connections with other active agents active_agents = self._get_active_agents() for other_agent in active_agents: self._establish_connection(agent, other_agent) # Register agent in coordination system self.coordination_system.register_agent(agent) def deactivate_agent(self, agent_id): agent = self._get_agent(agent_id) # Finalize agent work agent.finalize() # Cleanup connections self._cleanup_connections(agent) # Unregister from coordination system self.coordination_system.unregister_agent(agent) ``` **Agent State Management:** ```python class AgentStateManager: def manage_agent_state(self, agent, task_progression): current_state = agent.get_state() state_transitions = { 'idle': ['activating', 'terminated'], 'activating': ['active', 'error'], 'active': ['collaborating', 'finalizing', 'error'], 'collaborating': ['active', 'finalizing'], 'finalizing': ['completed', 'error'], 'completed': ['idle', 'terminated'], 'error': ['recovering', 'terminated'] } valid_transitions = state_transitions[current_state] next_state = self._determine_next_state(task_progression, valid_transitions) if next_state in valid_transitions: agent.transition_to(next_state) else: raise InvalidStateTransition(current_state, next_state) ``` ## MCP Integration ### MCP Server Architecture **Server Connection Management:** ```python class MCPConnectionManager: def __init__(self): self.servers = { 'context7': MCPServer('context7', 'documentation'), 'sequential': MCPServer('sequential', 'reasoning'), 'magic': MCPServer('magic', 'ui_generation'), 'playwright': MCPServer('playwright', 'browser_automation'), 'morphllm': MCPServer('morphllm', 'code_transformation'), 'serena': MCPServer('serena', 'semantic_analysis') } self.connection_pool = ConnectionPool(max_connections=10) def connect_server(self, server_name, task_context): server = self.servers[server_name] connection = self.connection_pool.get_connection(server) # Initialize server with task context initialization_result = connection.initialize(task_context) if initialization_result.success: return MCPConnection(server, connection) else: raise MCPConnectionError(f"Failed to connect to {server_name}") ``` **Protocol Implementation:** ```python class MCPProtocolHandler: def handle_request(self, server, request): # Format request according to MCP protocol mcp_request = { 'jsonrpc': '2.0', 'id': self._generate_request_id(), 'method': request.method, 'params': request.params } # Send request and handle response raw_response = server.send_request(mcp_request) # Parse and validate response response = self._parse_response(raw_response) self._validate_response(response) return MCPResponse(response) ``` ### External Tool Coordination **Multi-Server Orchestration:** ```python class MCPOrchestrator: def orchestrate_servers(self, task_requirements, available_servers): # Analyze task requirements server_needs = self._analyze_server_needs(task_requirements) # Select optimal server combination selected_servers = self._select_servers(server_needs, available_servers) # Plan execution strategy execution_plan = self._plan_execution(selected_servers, task_requirements) # Coordinate execution results = [] for step in execution_plan.steps: if step.parallel: step_results = self._execute_parallel(step.servers, step.requests) else: step_results = self._execute_sequential(step.servers, step.requests) results.extend(step_results) return OrchestrationResult(results) ``` **Server Capability Mapping:** ```python MCP_SERVER_CAPABILITIES = { 'context7': { 'primary_functions': ['documentation_lookup', 'pattern_retrieval'], 'input_types': ['library_name', 'framework_query'], 'output_types': ['documentation', 'code_examples'], 'performance_profile': {'latency': 'low', 'throughput': 'high'}, 'resource_requirements': {'memory': 'low', 'cpu': 'low'} }, 'sequential': { 'primary_functions': ['structured_reasoning', 'problem_decomposition'], 'input_types': ['complex_problem', 'analysis_request'], 'output_types': ['reasoning_chain', 'solution_steps'], 'performance_profile': {'latency': 'medium', 'throughput': 'medium'}, 'resource_requirements': {'memory': 'medium', 'cpu': 'high'} }, 'magic': { 'primary_functions': ['ui_generation', 'component_creation'], 'input_types': ['ui_specification', 'design_requirements'], 'output_types': ['react_components', 'css_styles'], 'performance_profile': {'latency': 'medium', 'throughput': 'medium'}, 'resource_requirements': {'memory': 'medium', 'cpu': 'medium'} } } ``` ### Server Lifecycle Management **Connection Pooling:** ```python class MCPConnectionPool: def __init__(self, max_connections_per_server=3): self.pools = {} self.max_connections = max_connections_per_server def get_connection(self, server_name): if server_name not in self.pools: self.pools[server_name] = ServerConnectionPool( server_name, self.max_connections ) return self.pools[server_name].acquire_connection() def release_connection(self, server_name, connection): pool = self.pools[server_name] pool.release_connection(connection) ``` **Health Monitoring:** ```python class MCPHealthMonitor: def monitor_server_health(self, servers): health_status = {} for server_name, server in servers.items(): health_check = self._perform_health_check(server) health_status[server_name] = { 'status': health_check.status, 'response_time': health_check.response_time, 'error_rate': health_check.error_rate, 'resource_usage': health_check.resource_usage } return HealthReport(health_status) def _perform_health_check(self, server): try: start_time = time.time() ping_response = server.ping() response_time = time.time() - start_time return HealthCheck( status='healthy' if ping_response.success else 'unhealthy', response_time=response_time, error_rate=server.get_error_rate(), resource_usage=server.get_resource_usage() ) except Exception as e: return HealthCheck(status='error', error=str(e)) ``` ## Configuration ### Component Management System **Component Registry:** ```python class ComponentRegistry: def __init__(self, component_directory): self.component_directory = Path(component_directory) self.components = {} self.dependency_graph = DependencyGraph() def discover_components(self): for component_file in self.component_directory.glob('**/*.py'): component_class = self._load_component_class(component_file) if self._is_valid_component(component_class): component_id = component_class.get_id() self.components[component_id] = component_class self._register_dependencies(component_id, component_class) def resolve_dependencies(self, requested_components): # Topological sort for installation order all_dependencies = set() for component_id in requested_components: dependencies = self._get_transitive_dependencies(component_id) all_dependencies.update(dependencies) return self.dependency_graph.topological_sort(all_dependencies) ``` **Dynamic Configuration System:** ```python class ConfigurationManager: def __init__(self): self.config_sources = [ EnvironmentConfigSource(), FileConfigSource('~/.claude/config.json'), DefaultConfigSource() ] self.config_cache = ConfigCache() def get_configuration(self, key, context=None): # Check cache first cached_value = self.config_cache.get(key, context) if cached_value is not None: return cached_value # Resolve from sources in priority order for source in self.config_sources: value = source.get(key, context) if value is not None: self.config_cache.set(key, value, context) return value raise ConfigurationNotFound(key) ``` ### Environment Setup **Installation Orchestration:** ```python class InstallationOrchestrator: def __init__(self): self.validators = [ SystemCompatibilityValidator(), DependencyValidator(), PermissionValidator() ] self.installers = { 'core': CoreInstaller(), 'mcp': MCPInstaller(), 'modes': ModesInstaller(), 'agents': AgentsInstaller() } def install_components(self, component_list, options): # Pre-installation validation validation_result = self._validate_environment(component_list) if not validation_result.valid: raise InstallationError(validation_result.errors) # Resolve installation order install_order = self._resolve_install_order(component_list) # Execute installation for component in install_order: installer = self.installers[component.type] result = installer.install(component, options) if not result.success: self._rollback_installation(component_list, component) raise InstallationError(result.error) ``` **File Merge Logic:** ```python class FileMergeManager: def merge_instruction_files(self, existing_content, new_content, merge_strategy): if merge_strategy == 'preserve_user': return self._preserve_user_merge(existing_content, new_content) elif merge_strategy == 'smart_merge': return self._smart_merge(existing_content, new_content) elif merge_strategy == 'overwrite': return new_content else: raise UnsupportedMergeStrategy(merge_strategy) def _preserve_user_merge(self, existing, new): # Parse both contents existing_sections = self._parse_sections(existing) new_sections = self._parse_sections(new) # Merge logic: preserve user modifications, add new sections merged_sections = existing_sections.copy() for section_name, section_content in new_sections.items(): if section_name not in existing_sections: merged_sections[section_name] = section_content else: # Keep existing if modified, otherwise update if not self._has_user_modifications(existing_sections[section_name]): merged_sections[section_name] = section_content return self._reconstruct_content(merged_sections) ``` ### Deployment Patterns **Multi-Environment Configuration:** ```python class EnvironmentConfiguration: ENVIRONMENTS = { 'development': { 'mcp_servers': 'all', 'logging_level': 'debug', 'performance_monitoring': 'detailed', 'resource_limits': 'relaxed' }, 'production': { 'mcp_servers': 'essential', 'logging_level': 'info', 'performance_monitoring': 'standard', 'resource_limits': 'strict' }, 'testing': { 'mcp_servers': 'mock', 'logging_level': 'debug', 'performance_monitoring': 'detailed', 'resource_limits': 'controlled' } } def configure_for_environment(self, environment): config = self.ENVIRONMENTS[environment] return EnvironmentConfig(config) ``` **Backup and Recovery:** ```python class BackupManager: def create_backup(self, installation_target): backup_id = self._generate_backup_id() backup_path = self._get_backup_path(backup_id) # Create comprehensive backup backup_contents = { 'claude_md': self._backup_claude_md(installation_target), 'custom_files': self._backup_custom_files(installation_target), 'mcp_config': self._backup_mcp_config(installation_target), 'metadata': self._create_backup_metadata() } self._write_backup(backup_path, backup_contents) return BackupInfo(backup_id, backup_path, backup_contents.keys()) def restore_backup(self, backup_id, installation_target): backup_path = self._get_backup_path(backup_id) backup_contents = self._read_backup(backup_path) # Restore files with validation for content_type, content_data in backup_contents.items(): self._restore_content(content_type, content_data, installation_target) ``` ## Extensibility ### Plugin Architecture **Component Extension Framework:** ```python class BaseComponent: """Base class for all SuperClaude components""" def get_metadata(self): """Return component metadata including dependencies""" raise NotImplementedError def get_dependencies(self): """Return list of required component dependencies""" return [] def install(self, install_dir): """Install component to target directory""" raise NotImplementedError def validate_environment(self, install_dir): """Validate installation environment""" return ValidationResult.SUCCESS def get_component_files(self): """Return list of files to be installed""" raise NotImplementedError class CustomAgentComponent(BaseComponent): """Example custom agent component""" def get_metadata(self): return { 'name': 'custom_agent', 'description': 'Custom domain specialist agent', 'version': '1.0.0', 'dependencies': ['core'] } def install(self, install_dir): agent_file = install_dir / 'AGENT_CustomSpecialist.md' self._write_agent_definition(agent_file) # Register agent in system self._register_agent('custom-specialist', { 'triggers': ['custom', 'specialist'], 'capabilities': ['domain_analysis'], 'expertise_level': 0.9 }) ``` **Custom MCP Server Integration:** ```python class CustomMCPComponent(BaseComponent): """Framework for integrating custom MCP servers""" def __init__(self, server_name, server_config): self.server_name = server_name self.server_config = server_config def install(self, install_dir): # Add server to MCP configuration mcp_config_path = install_dir / '.claude.json' mcp_config = self._load_mcp_config(mcp_config_path) mcp_config['mcpServers'][self.server_name] = { 'command': self.server_config['command'], 'args': self.server_config['args'], 'env': self.server_config.get('env', {}) } self._save_mcp_config(mcp_config_path, mcp_config) # Create server instruction file server_instruction_file = install_dir / f'MCP_{self.server_name}.md' self._write_server_instructions(server_instruction_file) ``` ### API Interfaces **Agent Development API:** ```python class AgentAPI: """API for developing custom agents""" @staticmethod def register_agent(agent_id, agent_config): """Register a new agent with the system""" agent_registry = AgentRegistry() agent_registry.register(agent_id, agent_config) @staticmethod def define_triggers(agent_id, triggers): """Define activation triggers for agent""" trigger_system = TriggerSystem() trigger_system.register_triggers(agent_id, triggers) @staticmethod def set_capabilities(agent_id, capabilities): """Define agent capabilities and expertise areas""" capability_system = CapabilitySystem() capability_system.register_capabilities(agent_id, capabilities) # Example usage AgentAPI.register_agent('data-scientist', { 'domain': 'data_science', 'expertise_level': 0.95, 'collaboration_style': 'analytical_contributor' }) AgentAPI.define_triggers('data-scientist', [ 'data analysis', 'machine learning', 'statistics', 'pandas', 'numpy', 'scikit-learn' ]) AgentAPI.set_capabilities('data-scientist', [ 'data_analysis', 'model_development', 'statistical_analysis', 'data_visualization', 'feature_engineering' ]) ``` **MCP Integration API:** ```python class MCPIntegrationAPI: """API for integrating custom MCP servers""" @staticmethod def register_server(server_name, server_config): """Register a new MCP server""" mcp_registry = MCPRegistry() mcp_registry.register_server(server_name, server_config) @staticmethod def define_capabilities(server_name, capabilities): """Define server capabilities and triggers""" capability_registry = MCPCapabilityRegistry() capability_registry.register_capabilities(server_name, capabilities) @staticmethod def set_activation_rules(server_name, rules): """Define when server should be activated""" activation_system = ActivationSystem() activation_system.register_rules(server_name, rules) # Example usage MCPIntegrationAPI.register_server('database-analyzer', { 'command': 'node', 'args': ['/path/to/database-analyzer-server.js'], 'capabilities': ['query_optimization', 'schema_analysis'] }) MCPIntegrationAPI.define_capabilities('database-analyzer', { 'primary_functions': ['sql_optimization', 'index_analysis'], 'input_types': ['sql_query', 'database_schema'], 'output_types': ['optimization_suggestions', 'performance_analysis'] }) ``` ### Extension Points **Custom Behavioral Modes:** ```python class CustomModeExtension: """Framework for creating custom behavioral modes""" def __init__(self, mode_name, mode_config): self.mode_name = mode_name self.mode_config = mode_config def create_mode_file(self, install_dir): mode_file = install_dir / f'MODE_{self.mode_name}.md' mode_content = self._generate_mode_content({ 'purpose': self.mode_config['purpose'], 'activation_triggers': self.mode_config['triggers'], 'behavioral_changes': self.mode_config['behaviors'], 'outcomes': self.mode_config['outcomes'], 'examples': self.mode_config['examples'] }) mode_file.write_text(mode_content) def register_mode(self): mode_registry = ModeRegistry() mode_registry.register_mode(self.mode_name, { 'triggers': self.mode_config['triggers'], 'priority': self.mode_config.get('priority', 'standard'), 'compatibility': self.mode_config.get('compatibility', []) }) # Example: Creating a "research" behavioral mode research_mode = CustomModeExtension('Research', { 'purpose': 'Deep academic and technical research with citation management', 'triggers': ['research', 'academic', 'study', 'investigate'], 'behaviors': [ 'Systematic information gathering', 'Source validation and citation', 'Evidence-based reasoning', 'Academic writing style' ], 'outcomes': [ 'Comprehensive research reports', 'Properly cited sources', 'Academic-quality analysis' ], 'examples': [ 'Literature review generation', 'Technical research synthesis', 'Comparative analysis with citations' ] }) ``` **Command Extension Framework:** ```python class CustomCommandExtension: """Framework for creating custom slash commands""" def __init__(self, command_name, command_config): self.command_name = command_name self.command_config = command_config def register_command(self): command_registry = CommandRegistry() command_registry.register_command(f'/sc:{self.command_name}', { 'handler': self.command_config['handler'], 'description': self.command_config['description'], 'flags': self.command_config.get('flags', []), 'auto_activation': self.command_config.get('auto_activation', {}), 'required_capabilities': self.command_config.get('capabilities', []) }) def create_command_documentation(self, install_dir): doc_file = install_dir / f'COMMAND_{self.command_name}.md' doc_content = self._generate_command_docs({ 'name': self.command_name, 'purpose': self.command_config['purpose'], 'usage': self.command_config['usage'], 'examples': self.command_config['examples'], 'integration': self.command_config.get('integration', {}) }) doc_file.write_text(doc_content) # Example: Creating a "validate" command validate_command = CustomCommandExtension('validate', { 'purpose': 'Comprehensive code and system validation', 'handler': 'ValidationCommandHandler', 'description': 'Multi-layer validation including security, performance, and quality', 'usage': [ '/sc:validate codebase/', '/sc:validate --focus security auth-system/', '/sc:validate --comprehensive --report project/' ], 'flags': ['focus', 'comprehensive', 'report', 'fix'], 'capabilities': ['code_analysis', 'security_scanning', 'performance_testing'], 'examples': [ 'Security validation workflow', 'Performance validation and optimization', 'Quality gate validation for CI/CD' ] }) ``` ## Technical Reference ### API Specifications **Core Framework APIs:** ```python # Component Management API class ComponentManager: def install_component(self, component_id: str, options: InstallOptions) -> InstallResult def uninstall_component(self, component_id: str) -> UninstallResult def list_components(self) -> List[ComponentInfo] def get_component_status(self, component_id: str) -> ComponentStatus def update_component(self, component_id: str, version: str) -> UpdateResult # Agent Management API class AgentManager: def register_agent(self, agent_id: str, config: AgentConfig) -> RegistrationResult def activate_agents(self, agent_ids: List[str], context: TaskContext) -> ActivationResult def deactivate_agents(self, agent_ids: List[str]) -> DeactivationResult def get_agent_status(self, agent_id: str) -> AgentStatus def configure_agent_coordination(self, agents: List[str], pattern: str) -> CoordinationResult # MCP Integration API class MCPManager: def register_server(self, server_name: str, config: MCPServerConfig) -> RegistrationResult def connect_server(self, server_name: str, context: ConnectionContext) -> MCPConnection def disconnect_server(self, server_name: str) -> DisconnectionResult def get_server_health(self, server_name: str) -> HealthStatus def execute_mcp_request(self, server: str, request: MCPRequest) -> MCPResponse ``` **Task Execution APIs:** ```python # Task Management API class TaskManager: def create_task(self, task_spec: TaskSpecification) -> Task def execute_task(self, task: Task, options: ExecutionOptions) -> TaskResult def monitor_task(self, task_id: str) -> TaskStatus def cancel_task(self, task_id: str) -> CancellationResult def get_task_history(self, filters: TaskFilters) -> List[TaskHistory] # Quality Management API class QualityManager: def validate_task(self, task: Task, criteria: ValidationCriteria) -> ValidationResult def apply_quality_gates(self, task_result: TaskResult) -> QualityGateResult def measure_quality(self, output: TaskOutput) -> QualityMetrics def generate_quality_report(self, task_id: str) -> QualityReport ``` ### Integration Patterns **Event-Driven Architecture:** ```python class EventBus: """Central event bus for component communication""" def subscribe(self, event_type: str, handler: Callable) -> Subscription def unsubscribe(self, subscription: Subscription) -> None def publish(self, event: Event) -> PublishResult def get_event_history(self, filters: EventFilters) -> List[Event] # Event types class EventTypes: TASK_STARTED = "task.started" TASK_COMPLETED = "task.completed" AGENT_ACTIVATED = "agent.activated" MCP_SERVER_CONNECTED = "mcp.server.connected" QUALITY_GATE_FAILED = "quality.gate.failed" PERFORMANCE_THRESHOLD_EXCEEDED = "performance.threshold.exceeded" # Example event handler def handle_task_completion(event: TaskCompletedEvent): task_result = event.result quality_metrics = quality_manager.measure_quality(task_result.output) if quality_metrics.overall_score < 0.8: event_bus.publish(QualityGateFailedEvent(task_result.task_id, quality_metrics)) ``` **Plugin Integration Pattern:** ```python class PluginManager: """Manages external plugins and extensions""" def __init__(self): self.plugins = {} self.plugin_loader = PluginLoader() self.dependency_resolver = DependencyResolver() def load_plugin(self, plugin_path: Path) -> PluginLoadResult: plugin_spec = self.plugin_loader.load_spec(plugin_path) dependencies = self.dependency_resolver.resolve(plugin_spec.dependencies) if dependencies.resolvable: plugin = self.plugin_loader.instantiate(plugin_spec) plugin.initialize(self._create_plugin_context()) self.plugins[plugin_spec.id] = plugin return PluginLoadResult.SUCCESS else: return PluginLoadResult.DEPENDENCY_ERROR class Plugin: """Base class for SuperClaude plugins""" def get_manifest(self) -> PluginManifest: """Return plugin metadata and capabilities""" raise NotImplementedError def initialize(self, context: PluginContext) -> InitializationResult: """Initialize plugin with system context""" raise NotImplementedError def shutdown(self) -> ShutdownResult: """Clean shutdown of plugin""" raise NotImplementedError ``` ### Implementation Details **Memory Management:** ```python class MemoryManager: """Manages system memory and context preservation""" def __init__(self): self.context_cache = LRUCache(max_size=1000) self.session_storage = SessionStorage() self.memory_compressor = MemoryCompressor() def store_context(self, session_id: str, context: SessionContext) -> StorageResult: # Compress context if needed if context.size > self.memory_threshold: compressed_context = self.memory_compressor.compress(context) return self.session_storage.store(session_id, compressed_context) else: return self.session_storage.store(session_id, context) def retrieve_context(self, session_id: str) -> SessionContext: stored_context = self.session_storage.retrieve(session_id) if stored_context.compressed: return self.memory_compressor.decompress(stored_context) else: return stored_context ``` **Performance Monitoring:** ```python class PerformanceMonitor: """Real-time system performance monitoring""" def __init__(self): self.metrics_collector = MetricsCollector() self.alert_system = AlertSystem() self.performance_analyzer = PerformanceAnalyzer() def start_monitoring(self, components: List[str]): for component in components: self.metrics_collector.start_collection(component) def analyze_performance(self) -> PerformanceAnalysis: metrics = self.metrics_collector.get_recent_metrics() analysis = self.performance_analyzer.analyze(metrics) # Trigger alerts if needed for alert in analysis.alerts: self.alert_system.trigger_alert(alert) return analysis ``` ### Debugging and Troubleshooting **Debug Information System:** ```python class DebugManager: """Comprehensive debugging and diagnostic system""" def enable_debug_mode(self, level: DebugLevel = DebugLevel.STANDARD): self.debug_level = level self.debug_logger = DebugLogger(level) self.trace_collector = TraceCollector() def collect_system_state(self) -> SystemState: return SystemState( agents=self._get_agent_states(), mcp_servers=self._get_mcp_states(), tasks=self._get_task_states(), performance=self._get_performance_state(), configuration=self._get_configuration_state() ) def generate_diagnostic_report(self, issue_description: str) -> DiagnosticReport: system_state = self.collect_system_state() error_logs = self.debug_logger.get_recent_errors() performance_metrics = self.performance_monitor.get_metrics() return DiagnosticReport( issue=issue_description, system_state=system_state, error_logs=error_logs, performance_metrics=performance_metrics, recommendations=self._generate_recommendations(system_state, error_logs) ) ``` **Error Recovery System:** ```python class ErrorRecoveryManager: """Automated error detection and recovery""" def __init__(self): self.recovery_strategies = { 'mcp_connection_failed': self._recover_mcp_connection, 'agent_activation_failed': self._recover_agent_activation, 'resource_exhaustion': self._recover_resource_exhaustion, 'quality_gate_failed': self._recover_quality_failure } def handle_error(self, error: SystemError) -> RecoveryResult: error_type = self._classify_error(error) if error_type in self.recovery_strategies: recovery_strategy = self.recovery_strategies[error_type] return recovery_strategy(error) else: return self._fallback_recovery(error) def _recover_mcp_connection(self, error: MCPConnectionError) -> RecoveryResult: # Attempt reconnection with backoff server_name = error.server_name max_retries = 3 for attempt in range(max_retries): try: connection = self.mcp_manager.reconnect_server(server_name) return RecoveryResult.SUCCESS except Exception: time.sleep(2 ** attempt) # Exponential backoff return RecoveryResult.FAILED ``` **System Health Monitoring:** ```python class HealthMonitor: """Continuous system health monitoring and reporting""" def __init__(self): self.health_checks = [ ComponentHealthCheck(), AgentHealthCheck(), MCPServerHealthCheck(), PerformanceHealthCheck(), MemoryHealthCheck() ] def perform_health_check(self) -> HealthReport: check_results = [] for health_check in self.health_checks: try: result = health_check.check() check_results.append(result) except Exception as e: check_results.append(HealthCheckResult.ERROR(str(e))) overall_health = self._calculate_overall_health(check_results) return HealthReport( overall_health=overall_health, individual_results=check_results, recommendations=self._generate_health_recommendations(check_results) ) ```