mirror of
https://github.com/SigNoz/signoz.git
synced 2025-12-17 23:47:12 +00:00
chore: add formula evaluator (#8112)
This commit is contained in:
parent
28f6f42ac4
commit
0d03203977
@ -1,5 +1,19 @@
|
||||
package querybuildertypesv5
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"slices"
|
||||
|
||||
"github.com/SigNoz/govaluate"
|
||||
"github.com/SigNoz/signoz/pkg/errors"
|
||||
)
|
||||
|
||||
type QueryBuilderFormula struct {
|
||||
// name of the formula
|
||||
Name string `json:"name"`
|
||||
@ -9,3 +23,560 @@ type QueryBuilderFormula struct {
|
||||
// functions to apply to the formula result
|
||||
Functions []Function `json:"functions,omitempty"`
|
||||
}
|
||||
|
||||
// small container to store the query name and index or alias reference
|
||||
// for a variable in the formula expression
|
||||
// read below for more details on aggregation references
|
||||
type aggregationRef struct {
|
||||
QueryName string
|
||||
Index *int // Index-based reference (e.g., A.0)
|
||||
Alias *string // Alias-based reference (e.g., A.my_alias)
|
||||
}
|
||||
|
||||
// seriesLookup provides lookup for series data
|
||||
type seriesLookup struct {
|
||||
// seriesKey -> timestamp -> value
|
||||
data map[string]map[int64]float64
|
||||
// seriesKey -> original series for metadata preservation
|
||||
seriesMetadata map[string]*TimeSeries
|
||||
}
|
||||
|
||||
// FormulaEvaluator handles formula evaluation b/w time series from different aggregations
|
||||
// Why do we evaluate the formula expression in query-service?
|
||||
// In the initial iteration, we let the CH take care of the formula evaluation.
|
||||
// Look at the query here https://github.com/SigNoz/signoz/blob/ad2d4ed56cf8457a0feee2b6947aed95c355c957/pkg/query-service/app/queryBuilder/query_builder_test.go#L459
|
||||
// This was achieved using the INNER JOIN between the query results.
|
||||
//
|
||||
// What are the issues with this approach?
|
||||
// The way CH handles the join evaluation is not the best suited for us in this scenario.
|
||||
// It runs the right most side of the join before running anything else and progressively
|
||||
// completes the join from right to left. This becomes inefficient for simple cases like apdex (A+B/2)/C.
|
||||
// There is no need to wait for the right most side to complete before starting the evaluation for A and B.
|
||||
// They could be run independently and results could be computed faster.
|
||||
// To address this, we now evaluate the formula expression in query-service.
|
||||
// The queries are run in parallel to fetch the results and then on the
|
||||
// result series, we evaluate the formula expression.
|
||||
// This also makes use of any application caching to avoid recomputing on same data
|
||||
type FormulaEvaluator struct {
|
||||
// expression to evaluate, prepared from the expression string with list of
|
||||
// supported functions https://github.com/SigNoz/govaluate?tab=readme-ov-file#what-operators-and-types-does-this-support
|
||||
expression *govaluate.EvaluableExpression
|
||||
// list of variables in the expression
|
||||
// For example, in sqrt(A*A + B*B), variables are A and B
|
||||
variables []string
|
||||
// canDefaultZero is a map of variables that can be defaulted to zero
|
||||
// when a value is not present for a variable at a timestamp
|
||||
//
|
||||
// Why is this needed?
|
||||
// If you are counting things, and use a expression like A/B, the non-existent
|
||||
// values can be defaulted to zero.
|
||||
// Let's take an example of error rate, say, the expression is A/B, and B represents
|
||||
// total requests, and A represents error requests. If for a timestamp t1, value for
|
||||
// A is not present, i.e there are no error requests for interval t1, then the error rate
|
||||
// is effectively 0. It's different to not show any value for that timestamp vs showing a value of 0.
|
||||
// for cases where we can deterministically say non-existent values are safe to be defaulted to 0,
|
||||
// we can set canDefaultZero to true
|
||||
canDefaultZero map[string]bool
|
||||
|
||||
// Parsed aggregation references from variables
|
||||
// As a part of the new query builder, we allow more than one aggregation in the same query
|
||||
// for logs and traces. This introduces a new concept of aggregation references.
|
||||
// For example, let's a query A has two aggregations `count()`, `sum(quantity)`.
|
||||
// In this case, there are two aggregations, each with their own series.
|
||||
// When they are referenced in the formula, they either need to be index referenced
|
||||
// or alias referenced.
|
||||
// For example, if the A has two aggregations, `count`, `sum(quantity)`,
|
||||
// the A.0 references to series from the first aggregation, and A.1 references to series from the second aggregation.
|
||||
// However, if the A has two aggregations with aliases, `count as cnt`, `sum(quantity) as total`,
|
||||
// then they can also be referenced as `A.cnt` and `A.total`
|
||||
// this is a map of variable name to aggregation reference
|
||||
aggRefs map[string]aggregationRef
|
||||
|
||||
timestampPool sync.Pool
|
||||
valuesPool sync.Pool
|
||||
}
|
||||
|
||||
// NewFormulaEvaluator creates a formula evaluator
|
||||
func NewFormulaEvaluator(expressionStr string, canDefaultZero map[string]bool) (*FormulaEvaluator, error) {
|
||||
functions := EvalFuncs()
|
||||
expression, err := govaluate.NewEvaluableExpressionWithFunctions(expressionStr, functions)
|
||||
if err != nil {
|
||||
return nil, errors.NewInvalidInputf(errors.CodeInvalidInput, "failed to parse expression")
|
||||
}
|
||||
|
||||
evaluator := &FormulaEvaluator{
|
||||
expression: expression,
|
||||
variables: expression.Vars(),
|
||||
canDefaultZero: canDefaultZero,
|
||||
aggRefs: make(map[string]aggregationRef),
|
||||
}
|
||||
|
||||
// Parse aggregation references from variables
|
||||
// for each variable, parse the reference and store it in the aggRefs map
|
||||
for _, variable := range evaluator.variables {
|
||||
aggRef, err := parseAggregationReference(variable)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
evaluator.aggRefs[variable] = aggRef
|
||||
}
|
||||
|
||||
// 1k timestamps is very generous, we don't expect to have more than 300
|
||||
evaluator.timestampPool.New = func() any {
|
||||
s := make([]int64, 0, 1000)
|
||||
return &s
|
||||
}
|
||||
evaluator.valuesPool.New = func() any {
|
||||
return make(map[string]any, len(evaluator.variables))
|
||||
}
|
||||
|
||||
return evaluator, nil
|
||||
}
|
||||
|
||||
// parseAggregationReference parses variable names like "A", "A.0", "A.my_alias"
|
||||
// into a aggregationRef container for later use
|
||||
func parseAggregationReference(variable string) (aggregationRef, error) {
|
||||
parts := strings.Split(variable, ".")
|
||||
|
||||
if len(parts) == 1 {
|
||||
// Simple query reference like "A" - defaults to first aggregation (index 0)
|
||||
defaultIndex := 0
|
||||
return aggregationRef{
|
||||
QueryName: parts[0],
|
||||
Index: &defaultIndex,
|
||||
}, nil
|
||||
}
|
||||
|
||||
if len(parts) == 2 {
|
||||
queryName := parts[0]
|
||||
reference := parts[1]
|
||||
|
||||
// Try to parse as index
|
||||
if index, err := strconv.Atoi(reference); err == nil {
|
||||
return aggregationRef{
|
||||
QueryName: queryName,
|
||||
Index: &index,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// Otherwise treat as alias
|
||||
return aggregationRef{
|
||||
QueryName: queryName,
|
||||
Alias: &reference,
|
||||
}, nil
|
||||
}
|
||||
|
||||
return aggregationRef{}, errors.NewInvalidInputf(errors.CodeInvalidInput, "invalid aggregation reference %q", variable)
|
||||
}
|
||||
|
||||
// EvaluateFormula processes multiple time series with proper aggregation handling
|
||||
func (fe *FormulaEvaluator) EvaluateFormula(timeSeriesData map[string]*TimeSeriesData) ([]*TimeSeries, error) {
|
||||
// Build lookup structures for all referenced aggregations
|
||||
lookup := fe.buildSeriesLookup(timeSeriesData)
|
||||
|
||||
// Find all unique label combinations across referenced series
|
||||
uniqueLabelSets := fe.findUniqueLabelSets(lookup)
|
||||
|
||||
// Process each unique label set
|
||||
var resultSeries []*TimeSeries
|
||||
var wg sync.WaitGroup
|
||||
resultChan := make(chan *TimeSeries, len(uniqueLabelSets))
|
||||
maxSeries := make(chan struct{}, 4)
|
||||
|
||||
// For each candidate label set, evaluate the formula expression
|
||||
// and store the result in the resultChan
|
||||
for _, labelSet := range uniqueLabelSets {
|
||||
wg.Add(1)
|
||||
go func(labels []*Label) {
|
||||
defer wg.Done()
|
||||
maxSeries <- struct{}{}
|
||||
defer func() { <-maxSeries }()
|
||||
|
||||
// main workhorse of the formula evaluation
|
||||
series := fe.evaluateForLabelSet(labels, lookup)
|
||||
if series != nil && len(series.Values) > 0 {
|
||||
resultChan <- series
|
||||
}
|
||||
}(labelSet)
|
||||
}
|
||||
|
||||
go func() {
|
||||
wg.Wait()
|
||||
close(resultChan)
|
||||
}()
|
||||
|
||||
for series := range resultChan {
|
||||
resultSeries = append(resultSeries, series)
|
||||
}
|
||||
|
||||
return resultSeries, nil
|
||||
}
|
||||
|
||||
// buildSeriesLookup creates lookup structure for all referenced aggregations
|
||||
func (fe *FormulaEvaluator) buildSeriesLookup(timeSeriesData map[string]*TimeSeriesData) *seriesLookup {
|
||||
lookup := &seriesLookup{
|
||||
// data is a map of series key to timestamp to value
|
||||
// series key is a unique identifier for a series
|
||||
// timestamp is the timestamp of the value
|
||||
// value is the value of the series at the timestamp
|
||||
data: make(map[string]map[int64]float64),
|
||||
// seriesMetadata is a map of series key to series metadata
|
||||
// series metadata is the metadata of the series
|
||||
// this is used to preserve the original label structure and metadata
|
||||
// when the series is returned to the caller
|
||||
// It's also used for finding matching series for a variable
|
||||
seriesMetadata: make(map[string]*TimeSeries),
|
||||
}
|
||||
|
||||
for variable, aggRef := range fe.aggRefs {
|
||||
// We are only interested in the time series data for the queries that are
|
||||
// involved in the formula expression.
|
||||
data, exists := timeSeriesData[aggRef.QueryName]
|
||||
if !exists {
|
||||
continue
|
||||
}
|
||||
|
||||
// Find the specific aggregation bucket
|
||||
// Now, that we have the data for the query, we look for the specific aggregation bucket
|
||||
// referenced in the formula expression.
|
||||
// For example, if the formula expression is `B.2`, the above `data` would be the
|
||||
// time series data for the query B.
|
||||
// The following code will find the aggregation at the index 2
|
||||
// so we can build the series key -> timestamp -> value map for the expr evaluation
|
||||
var targetBucket *AggregationBucket
|
||||
for _, bucket := range data.Aggregations {
|
||||
if aggRef.Index != nil && bucket.Index == *aggRef.Index {
|
||||
targetBucket = bucket
|
||||
break
|
||||
}
|
||||
if aggRef.Alias != nil && bucket.Alias == *aggRef.Alias {
|
||||
targetBucket = bucket
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if targetBucket == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
// Process all series in the target bucket
|
||||
for seriesIdx, series := range targetBucket.Series {
|
||||
seriesKey := fe.buildSeriesKey(variable, seriesIdx, series.Labels)
|
||||
|
||||
// Initialize timestamp map
|
||||
if _, exists := lookup.data[seriesKey]; !exists {
|
||||
lookup.data[seriesKey] = make(map[int64]float64, len(series.Values))
|
||||
lookup.seriesMetadata[seriesKey] = series
|
||||
}
|
||||
|
||||
// Store all timestamp-value pairs
|
||||
for _, value := range series.Values {
|
||||
lookup.data[seriesKey][value.Timestamp] = value.Value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return lookup
|
||||
}
|
||||
|
||||
// buildSeriesKey creates a unique key for a series within a specific aggregation
|
||||
func (fe *FormulaEvaluator) buildSeriesKey(variable string, seriesIndex int, labels []*Label) string {
|
||||
// Create a deterministic key that includes variable and label information
|
||||
// Why is variable name needed?
|
||||
// Because we need to maintain if a certain series belongs to a query.
|
||||
// The variable name here is the name of the query.
|
||||
// Why is series index needed?
|
||||
// Since we support multiple aggregations in the same query, we need to
|
||||
// make use the series index to differentiate between series from different aggregations.
|
||||
|
||||
// Perhaps, we can reduce the allocations here and use the hash of the variable and series index
|
||||
// to create a unique key.
|
||||
// However, the number of labels and series from query result should be small,
|
||||
// and not be a bottleneck.
|
||||
// So, we can keep it simple for now.
|
||||
var keyParts []string
|
||||
keyParts = append(keyParts, variable)
|
||||
keyParts = append(keyParts, strconv.Itoa(seriesIndex))
|
||||
|
||||
// Sort labels by key name for consistent ordering
|
||||
sortedLabels := make([]*Label, len(labels))
|
||||
copy(sortedLabels, labels)
|
||||
slices.SortFunc(sortedLabels, func(i, j *Label) int {
|
||||
if i.Key.Name < j.Key.Name {
|
||||
return -1
|
||||
}
|
||||
if i.Key.Name > j.Key.Name {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
})
|
||||
|
||||
for _, label := range sortedLabels {
|
||||
keyParts = append(keyParts, fmt.Sprintf("%s=%v", label.Key.Name, label.Value))
|
||||
}
|
||||
|
||||
return strings.Join(keyParts, "|")
|
||||
}
|
||||
|
||||
// perhaps this could be named better. The job of this function is to find all unique and supersets
|
||||
// of label sets from the series metadata.
|
||||
// For example, if the series metadata has the following label sets:
|
||||
// [{"service": "frontend", "operation": "GET /api"}, {"service": "frontend"}]
|
||||
// then the function should return the following label sets:
|
||||
// [{"service": "frontend", "operation": "GET /api"}]
|
||||
// Why? because `{"service": "frontend"}` is a subset of `{"service": "frontend", "operation": "GET /api"}`
|
||||
// The result of any expression that uses the series with `{"service": "frontend", "operation": "GET /api"}`
|
||||
// and `{"service": "frontend"}` would be the series with `{"service": "frontend", "operation": "GET /api"}`
|
||||
// So, we create a set of labels sets that can be termed as candidates for the final result.
|
||||
func (fe *FormulaEvaluator) findUniqueLabelSets(lookup *seriesLookup) [][]*Label {
|
||||
var allLabelSets [][]*Label
|
||||
|
||||
// Collect all label sets from series metadata
|
||||
for _, series := range lookup.seriesMetadata {
|
||||
allLabelSets = append(allLabelSets, series.Labels)
|
||||
}
|
||||
|
||||
// sort the label sets by the number of labels in descending order
|
||||
slices.SortFunc(allLabelSets, func(i, j []*Label) int {
|
||||
if len(i) > len(j) {
|
||||
return -1
|
||||
}
|
||||
if len(i) < len(j) {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
})
|
||||
|
||||
// Find unique label sets using proper label comparison
|
||||
var uniqueSets [][]*Label
|
||||
for _, labelSet := range allLabelSets {
|
||||
isUnique := true
|
||||
for _, uniqueSet := range uniqueSets {
|
||||
if fe.isSubset(uniqueSet, labelSet) {
|
||||
isUnique = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if isUnique {
|
||||
uniqueSets = append(uniqueSets, labelSet)
|
||||
}
|
||||
}
|
||||
|
||||
return uniqueSets
|
||||
}
|
||||
|
||||
func (fe *FormulaEvaluator) isSubset(labels1, labels2 []*Label) bool {
|
||||
labelMap1 := make(map[string]any)
|
||||
labelMap2 := make(map[string]any)
|
||||
|
||||
for _, label := range labels1 {
|
||||
labelMap1[label.Key.Name] = label.Value
|
||||
}
|
||||
for _, label := range labels2 {
|
||||
labelMap2[label.Key.Name] = label.Value
|
||||
}
|
||||
|
||||
for k, v := range labelMap2 {
|
||||
if val, ok := labelMap1[k]; !ok || val != v {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// evaluateForLabelSet performs formula evaluation for a specific label set
|
||||
func (fe *FormulaEvaluator) evaluateForLabelSet(targetLabels []*Label, lookup *seriesLookup) *TimeSeries {
|
||||
// Find matching series for each variable
|
||||
variableData := make(map[string]map[int64]float64)
|
||||
// not every series would have a value for every timestamp
|
||||
// so we need to collect all timestamps from the series that have a value
|
||||
// for the variable
|
||||
var allTimestamps map[int64]struct{} = make(map[int64]struct{})
|
||||
|
||||
for variable := range fe.aggRefs {
|
||||
// Find series with matching labels for this variable
|
||||
for seriesKey, series := range lookup.seriesMetadata {
|
||||
if strings.HasPrefix(seriesKey, variable+"|") && fe.isSubset(targetLabels, series.Labels) {
|
||||
if timestampData, exists := lookup.data[seriesKey]; exists {
|
||||
variableData[variable] = timestampData
|
||||
// Collect all timestamps
|
||||
for ts := range timestampData {
|
||||
allTimestamps[ts] = struct{}{}
|
||||
}
|
||||
break // Found matching series for this variable
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert timestamps to sorted slice
|
||||
tsPtr := fe.timestampPool.Get().(*[]int64)
|
||||
timestamps := (*tsPtr)[:0]
|
||||
defer func() {
|
||||
*tsPtr = timestamps[:0]
|
||||
fe.timestampPool.Put(tsPtr)
|
||||
}()
|
||||
|
||||
for ts := range allTimestamps {
|
||||
timestamps = append(timestamps, ts)
|
||||
}
|
||||
slices.Sort(timestamps)
|
||||
|
||||
// Evaluate formula at each timestamp
|
||||
var resultValues []*TimeSeriesValue
|
||||
values := fe.valuesPool.Get().(map[string]any)
|
||||
defer fe.valuesPool.Put(values)
|
||||
|
||||
for _, timestamp := range timestamps {
|
||||
// Clear previous values
|
||||
for k := range values {
|
||||
delete(values, k)
|
||||
}
|
||||
|
||||
// Collect values for this timestamp
|
||||
validCount := 0
|
||||
for _, variable := range fe.variables {
|
||||
if varData, exists := variableData[variable]; exists {
|
||||
if value, exists := varData[timestamp]; exists {
|
||||
values[variable] = value
|
||||
validCount++
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply default zeros where allowed
|
||||
for _, variable := range fe.variables {
|
||||
if _, exists := values[variable]; !exists && fe.canDefaultZero[variable] {
|
||||
values[variable] = 0.0
|
||||
validCount++
|
||||
}
|
||||
}
|
||||
|
||||
// Skip if we don't have all required variables
|
||||
if validCount != len(fe.variables) {
|
||||
continue
|
||||
}
|
||||
|
||||
// Evaluate expression
|
||||
result, err := fe.expression.Evaluate(values)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
|
||||
value, ok := result.(float64)
|
||||
if !ok || math.IsNaN(value) || math.IsInf(value, 0) {
|
||||
continue
|
||||
}
|
||||
|
||||
resultValues = append(resultValues, &TimeSeriesValue{
|
||||
Timestamp: timestamp,
|
||||
Value: value,
|
||||
})
|
||||
}
|
||||
|
||||
if len(resultValues) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Preserve original label structure and metadata
|
||||
resultLabels := make([]*Label, len(targetLabels))
|
||||
copy(resultLabels, targetLabels)
|
||||
|
||||
return &TimeSeries{
|
||||
Labels: resultLabels,
|
||||
Values: resultValues,
|
||||
}
|
||||
}
|
||||
|
||||
// EvalFuncs returns mathematical functions
|
||||
func EvalFuncs() map[string]govaluate.ExpressionFunction {
|
||||
funcs := make(map[string]govaluate.ExpressionFunction)
|
||||
|
||||
pi180 := math.Pi / 180
|
||||
rad180 := 180 / math.Pi
|
||||
|
||||
// Mathematical functions
|
||||
funcs["exp"] = func(args ...any) (any, error) {
|
||||
return math.Exp(args[0].(float64)), nil
|
||||
}
|
||||
funcs["log"] = func(args ...any) (any, error) {
|
||||
return math.Log(args[0].(float64)), nil
|
||||
}
|
||||
funcs["ln"] = func(args ...any) (any, error) {
|
||||
return math.Log(args[0].(float64)), nil
|
||||
}
|
||||
funcs["exp2"] = func(args ...any) (any, error) {
|
||||
return math.Exp2(args[0].(float64)), nil
|
||||
}
|
||||
funcs["log2"] = func(args ...any) (any, error) {
|
||||
return math.Log2(args[0].(float64)), nil
|
||||
}
|
||||
funcs["exp10"] = func(args ...any) (any, error) {
|
||||
return math.Pow10(int(args[0].(float64))), nil
|
||||
}
|
||||
funcs["log10"] = func(args ...any) (any, error) {
|
||||
return math.Log10(args[0].(float64)), nil
|
||||
}
|
||||
funcs["sqrt"] = func(args ...any) (any, error) {
|
||||
return math.Sqrt(args[0].(float64)), nil
|
||||
}
|
||||
funcs["cbrt"] = func(args ...any) (any, error) {
|
||||
return math.Cbrt(args[0].(float64)), nil
|
||||
}
|
||||
funcs["erf"] = func(args ...any) (any, error) {
|
||||
return math.Erf(args[0].(float64)), nil
|
||||
}
|
||||
funcs["erfc"] = func(args ...any) (any, error) {
|
||||
return math.Erfc(args[0].(float64)), nil
|
||||
}
|
||||
funcs["lgamma"] = func(args ...any) (any, error) {
|
||||
v, _ := math.Lgamma(args[0].(float64))
|
||||
return v, nil
|
||||
}
|
||||
funcs["tgamma"] = func(args ...any) (any, error) {
|
||||
return math.Gamma(args[0].(float64)), nil
|
||||
}
|
||||
|
||||
// Trigonometric functions
|
||||
funcs["sin"] = func(args ...any) (any, error) {
|
||||
return math.Sin(args[0].(float64)), nil
|
||||
}
|
||||
funcs["cos"] = func(args ...any) (any, error) {
|
||||
return math.Cos(args[0].(float64)), nil
|
||||
}
|
||||
funcs["tan"] = func(args ...any) (any, error) {
|
||||
return math.Tan(args[0].(float64)), nil
|
||||
}
|
||||
funcs["asin"] = func(args ...any) (any, error) {
|
||||
return math.Asin(args[0].(float64)), nil
|
||||
}
|
||||
funcs["acos"] = func(args ...any) (any, error) {
|
||||
return math.Acos(args[0].(float64)), nil
|
||||
}
|
||||
funcs["atan"] = func(args ...any) (any, error) {
|
||||
return math.Atan(args[0].(float64)), nil
|
||||
}
|
||||
|
||||
// Utility functions (optimized with pre-computed constants)
|
||||
funcs["degrees"] = func(args ...any) (any, error) {
|
||||
return args[0].(float64) * rad180, nil
|
||||
}
|
||||
funcs["radians"] = func(args ...any) (any, error) {
|
||||
return args[0].(float64) * pi180, nil
|
||||
}
|
||||
funcs["now"] = func(args ...any) (any, error) {
|
||||
return float64(time.Now().Unix()), nil
|
||||
}
|
||||
|
||||
return funcs
|
||||
}
|
||||
|
||||
// GetSupportedFunctions returns the list of supported function names
|
||||
func GetSupportedFunctions() []string {
|
||||
return []string{
|
||||
"exp", "log", "ln", "exp2", "log2", "exp10", "log10",
|
||||
"sqrt", "cbrt", "erf", "erfc", "lgamma", "tgamma",
|
||||
"sin", "cos", "tan", "asin", "acos", "atan",
|
||||
"degrees", "radians", "now",
|
||||
}
|
||||
}
|
||||
|
||||
@ -0,0 +1,266 @@
|
||||
package querybuildertypesv5
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
|
||||
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
// createBenchmarkTimeSeriesData creates test data for benchmarking
|
||||
func createBenchmarkTimeSeriesData(queryName string, numSeries, numPoints int) *TimeSeriesData {
|
||||
series := make([]*TimeSeries, numSeries)
|
||||
|
||||
for i := 0; i < numSeries; i++ {
|
||||
// Create labels: service-{i} and env-{i%5} to have some variety
|
||||
labels := []*Label{
|
||||
{
|
||||
Key: telemetrytypes.TelemetryFieldKey{
|
||||
Name: "service",
|
||||
FieldDataType: telemetrytypes.FieldDataTypeString,
|
||||
},
|
||||
Value: fmt.Sprintf("service-%d", i),
|
||||
},
|
||||
{
|
||||
Key: telemetrytypes.TelemetryFieldKey{
|
||||
Name: "env",
|
||||
FieldDataType: telemetrytypes.FieldDataTypeString,
|
||||
},
|
||||
Value: fmt.Sprintf("env-%d", i%5), // 5 different environments
|
||||
},
|
||||
}
|
||||
|
||||
// Create time series values
|
||||
values := make([]*TimeSeriesValue, numPoints)
|
||||
baseTime := int64(1000000) // Start timestamp
|
||||
baseValue := float64(i + 1) // Different base value per series
|
||||
|
||||
for j := 0; j < numPoints; j++ {
|
||||
values[j] = &TimeSeriesValue{
|
||||
Timestamp: baseTime + int64(j*60), // 1-minute intervals
|
||||
Value: baseValue + float64(j), // Incrementing values
|
||||
}
|
||||
}
|
||||
|
||||
series[i] = &TimeSeries{
|
||||
Labels: labels,
|
||||
Values: values,
|
||||
}
|
||||
}
|
||||
|
||||
return &TimeSeriesData{
|
||||
QueryName: queryName,
|
||||
Aggregations: []*AggregationBucket{
|
||||
{
|
||||
Index: 0,
|
||||
Alias: queryName + "_agg",
|
||||
Series: series,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkFormulaEvaluator_10k_Series_300_Points benchmarks the target scenario
|
||||
func BenchmarkFormulaEvaluator_10k_Series_300_Points(b *testing.B) {
|
||||
// Create test data: 10k series, 300 points each
|
||||
const numSeries = 10000
|
||||
const numPoints = 300
|
||||
|
||||
timeSeriesData := map[string]*TimeSeriesData{
|
||||
"A": createBenchmarkTimeSeriesData("A", numSeries, numPoints),
|
||||
"B": createBenchmarkTimeSeriesData("B", numSeries, numPoints), // Same structure as A
|
||||
}
|
||||
|
||||
// Create evaluator for A + B
|
||||
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(b, err)
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
// Log data size being processed
|
||||
totalDataPoints := numSeries * numPoints * 2 // 2 queries
|
||||
b.Logf("Processing %d series × %d points × 2 queries = %d total data points",
|
||||
numSeries, numPoints, totalDataPoints)
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
result, err := evaluator.EvaluateFormula(timeSeriesData)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
if len(result) == 0 {
|
||||
b.Fatal("No results produced")
|
||||
}
|
||||
// Verify we got the expected number of series
|
||||
if len(result) != numSeries {
|
||||
b.Fatalf("Expected %d result series, got %d", numSeries, len(result))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkFormulaEvaluator_Scaling tests different scales for comparison
|
||||
func BenchmarkFormulaEvaluator_1k_Series_300_Points(b *testing.B) {
|
||||
const numSeries = 1000
|
||||
const numPoints = 300
|
||||
|
||||
timeSeriesData := map[string]*TimeSeriesData{
|
||||
"A": createBenchmarkTimeSeriesData("A", numSeries, numPoints),
|
||||
"B": createBenchmarkTimeSeriesData("B", numSeries, numPoints),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(b, err)
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
result, err := evaluator.EvaluateFormula(timeSeriesData)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
if len(result) != numSeries {
|
||||
b.Fatalf("Expected %d result series, got %d", numSeries, len(result))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkFormulaEvaluator_5k_Series_300_Points(b *testing.B) {
|
||||
const numSeries = 5000
|
||||
const numPoints = 300
|
||||
|
||||
timeSeriesData := map[string]*TimeSeriesData{
|
||||
"A": createBenchmarkTimeSeriesData("A", numSeries, numPoints),
|
||||
"B": createBenchmarkTimeSeriesData("B", numSeries, numPoints),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(b, err)
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
result, err := evaluator.EvaluateFormula(timeSeriesData)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
if len(result) != numSeries {
|
||||
b.Fatalf("Expected %d result series, got %d", numSeries, len(result))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkFormulaEvaluator_Complex_Expression tests more complex math
|
||||
func BenchmarkFormulaEvaluator_10k_Series_Complex(b *testing.B) {
|
||||
const numSeries = 10000
|
||||
const numPoints = 300
|
||||
|
||||
timeSeriesData := map[string]*TimeSeriesData{
|
||||
"A": createBenchmarkTimeSeriesData("A", numSeries, numPoints),
|
||||
"B": createBenchmarkTimeSeriesData("B", numSeries, numPoints),
|
||||
}
|
||||
|
||||
// More complex expression
|
||||
evaluator, err := NewFormulaEvaluator("sqrt(A * A + B * B)", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(b, err)
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
result, err := evaluator.EvaluateFormula(timeSeriesData)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
if len(result) != numSeries {
|
||||
b.Fatalf("Expected %d result series, got %d", numSeries, len(result))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkFormulaEvaluator_Memory_Reuse tests object pool efficiency
|
||||
func BenchmarkFormulaEvaluator_Memory_Reuse(b *testing.B) {
|
||||
const numSeries = 1000
|
||||
const numPoints = 100
|
||||
|
||||
timeSeriesData := map[string]*TimeSeriesData{
|
||||
"A": createBenchmarkTimeSeriesData("A", numSeries, numPoints),
|
||||
"B": createBenchmarkTimeSeriesData("B", numSeries, numPoints),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(b, err)
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
// Run multiple times to test pool reuse
|
||||
for i := 0; i < b.N; i++ {
|
||||
result, err := evaluator.EvaluateFormula(timeSeriesData)
|
||||
if err != nil {
|
||||
b.Fatal(err)
|
||||
}
|
||||
if len(result) == 0 {
|
||||
b.Fatal("No results produced")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark just the lookup building phase
|
||||
func BenchmarkFormulaEvaluator_LookupBuilding(b *testing.B) {
|
||||
const numSeries = 10000
|
||||
const numPoints = 300
|
||||
|
||||
timeSeriesData := map[string]*TimeSeriesData{
|
||||
"A": createBenchmarkTimeSeriesData("A", numSeries, numPoints),
|
||||
"B": createBenchmarkTimeSeriesData("B", numSeries, numPoints),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(b, err)
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
// Only benchmark the lookup building phase
|
||||
_ = evaluator.buildSeriesLookup(timeSeriesData)
|
||||
}
|
||||
}
|
||||
|
||||
// Benchmark just the evaluation phase (excluding lookup building)
|
||||
func BenchmarkFormulaEvaluator_EvaluationOnly(b *testing.B) {
|
||||
const numSeries = 10000
|
||||
const numPoints = 300
|
||||
|
||||
timeSeriesData := map[string]*TimeSeriesData{
|
||||
"A": createBenchmarkTimeSeriesData("A", numSeries, numPoints),
|
||||
"B": createBenchmarkTimeSeriesData("B", numSeries, numPoints),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(b, err)
|
||||
|
||||
// Pre-build lookup once
|
||||
lookup := evaluator.buildSeriesLookup(timeSeriesData)
|
||||
uniqueLabelSets := evaluator.findUniqueLabelSets(lookup)
|
||||
|
||||
b.ResetTimer()
|
||||
b.ReportAllocs()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
// Only benchmark the evaluation phase
|
||||
var resultCount int
|
||||
for _, labelSet := range uniqueLabelSets {
|
||||
series := evaluator.evaluateForLabelSet(labelSet, lookup)
|
||||
if series != nil && len(series.Values) > 0 {
|
||||
resultCount++
|
||||
}
|
||||
}
|
||||
if resultCount == 0 {
|
||||
b.Fatal("No results produced")
|
||||
}
|
||||
}
|
||||
}
|
||||
865
pkg/types/querybuildertypes/querybuildertypesv5/formula_test.go
Normal file
865
pkg/types/querybuildertypes/querybuildertypesv5/formula_test.go
Normal file
@ -0,0 +1,865 @@
|
||||
package querybuildertypesv5
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func createFormulaTestTimeSeriesData(queryName string, series []*TimeSeries) *TimeSeriesData {
|
||||
return &TimeSeriesData{
|
||||
QueryName: queryName,
|
||||
Aggregations: []*AggregationBucket{
|
||||
{
|
||||
Index: 0,
|
||||
Alias: queryName + "_agg",
|
||||
Series: series,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func createLabels(labelMap map[string]string) []*Label {
|
||||
var labels []*Label
|
||||
for key, value := range labelMap {
|
||||
labels = append(labels, &Label{
|
||||
Key: telemetrytypes.TelemetryFieldKey{
|
||||
Name: key,
|
||||
FieldDataType: telemetrytypes.FieldDataTypeString,
|
||||
},
|
||||
Value: value,
|
||||
})
|
||||
}
|
||||
return labels
|
||||
}
|
||||
|
||||
func createValues(points map[int64]float64) []*TimeSeriesValue {
|
||||
var values []*TimeSeriesValue
|
||||
for timestamp, value := range points {
|
||||
values = append(values, &TimeSeriesValue{
|
||||
Timestamp: timestamp,
|
||||
Value: value,
|
||||
})
|
||||
}
|
||||
return values
|
||||
}
|
||||
|
||||
func TestFindUniqueLabelSets(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
tsData map[string]*TimeSeriesData
|
||||
expression string
|
||||
expected int // number of unique label sets
|
||||
}{
|
||||
{
|
||||
name: "two distinct label sets",
|
||||
tsData: map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 10}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 30}),
|
||||
},
|
||||
}),
|
||||
},
|
||||
expression: "A + B",
|
||||
expected: 2,
|
||||
},
|
||||
{
|
||||
name: "subset elimination test",
|
||||
tsData: map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 10}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 30}),
|
||||
},
|
||||
}),
|
||||
"C": createFormulaTestTimeSeriesData("C", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"operation": "PUT /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 30}),
|
||||
},
|
||||
}),
|
||||
"D": createFormulaTestTimeSeriesData("D", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"http_status": "200",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 30}),
|
||||
},
|
||||
}),
|
||||
},
|
||||
expression: "A + B + C + D",
|
||||
expected: 3, // Three unique label sets after subset elimination
|
||||
},
|
||||
{
|
||||
name: "empty series",
|
||||
tsData: map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{}),
|
||||
},
|
||||
expression: "A + B",
|
||||
expected: 0,
|
||||
},
|
||||
{
|
||||
name: "overlapping labels",
|
||||
tsData: map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 10}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 12}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 30}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{1: 25}),
|
||||
},
|
||||
}),
|
||||
},
|
||||
expression: "A + B",
|
||||
expected: 2, // Two unique label sets after subset detection
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
|
||||
evaluator, err := NewFormulaEvaluator(tt.expression, map[string]bool{"A": false, "B": false})
|
||||
require.NoError(t, err)
|
||||
|
||||
lookup := evaluator.buildSeriesLookup(tt.tsData)
|
||||
uniqueLabelSets := evaluator.findUniqueLabelSets(lookup)
|
||||
|
||||
assert.Equal(t, tt.expected, len(uniqueLabelSets))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestBasicFormulaEvaluation(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
tsData map[string]*TimeSeriesData
|
||||
expression string
|
||||
expected int // number of result series
|
||||
}{
|
||||
{
|
||||
name: "simple addition",
|
||||
tsData: map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 30,
|
||||
3: 40,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
},
|
||||
expression: "A + B",
|
||||
expected: 2,
|
||||
},
|
||||
{
|
||||
name: "division with zeros",
|
||||
tsData: map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 0,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 0,
|
||||
3: 10,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
},
|
||||
expression: "A/B",
|
||||
expected: 1,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
evaluator, err := NewFormulaEvaluator(tt.expression, map[string]bool{"A": true, "B": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tt.tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
assert.Equal(t, tt.expected, len(result))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestErrorRateCalculation(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 12,
|
||||
2: 45,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "route",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 2,
|
||||
2: 45,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 6,
|
||||
2: 9,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("B/A", map[string]bool{"A": true, "B": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
// Should have 3 result series (frontend gets 0, redis gets calculated values, route gets 0)
|
||||
assert.Equal(t, 3, len(result))
|
||||
|
||||
// Find the redis series and check its values
|
||||
for _, series := range result {
|
||||
for _, label := range series.Labels {
|
||||
if label.Key.Name == "service_name" && label.Value == "redis" {
|
||||
assert.Len(t, series.Values, 2)
|
||||
assert.Equal(t, 0.5, series.Values[0].Value) // 6/12
|
||||
assert.Equal(t, 0.2, series.Values[1].Value) // 9/45
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestNoGroupKeysOnLeftSide(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 12,
|
||||
2: 45,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("B/A", map[string]bool{"A": true, "B": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
// Should have 2 result series (frontend and redis)
|
||||
assert.Equal(t, 2, len(result))
|
||||
|
||||
// Verify calculations
|
||||
expectedValues := map[string][]float64{
|
||||
"frontend": {2.2, 3.25}, // 22/10, 65/20
|
||||
"redis": {1.8333333333333333, 1.4444444444444444}, // 22/12, 65/45
|
||||
}
|
||||
|
||||
for _, series := range result {
|
||||
for _, label := range series.Labels {
|
||||
if label.Key.Name == "service_name" {
|
||||
serviceName := label.Value.(string)
|
||||
if expected, exists := expectedValues[serviceName]; exists {
|
||||
assert.Len(t, series.Values, len(expected))
|
||||
for i, expectedVal := range expected {
|
||||
assert.InDelta(t, expectedVal, series.Values[i].Value, 0.0001)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestSameGroupKeys(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-1",
|
||||
"state": "running",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
4: 40,
|
||||
5: 50,
|
||||
7: 70,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-2",
|
||||
"state": "idle",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 12,
|
||||
2: 45,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-1",
|
||||
"state": "running",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-2",
|
||||
"state": "idle",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A/B", map[string]bool{"A": true, "B": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
// Should have 2 result series
|
||||
assert.Equal(t, 2, len(result))
|
||||
|
||||
// Verify that we get the expected calculations
|
||||
for _, series := range result {
|
||||
hostName := ""
|
||||
state := ""
|
||||
for _, label := range series.Labels {
|
||||
if label.Key.Name == "host_name" {
|
||||
hostName = label.Value.(string)
|
||||
}
|
||||
if label.Key.Name == "state" {
|
||||
state = label.Value.(string)
|
||||
}
|
||||
}
|
||||
|
||||
if hostName == "ip-10-420-69-1" && state == "running" {
|
||||
// Check specific calculations
|
||||
assert.Equal(t, float64(10)/float64(22), series.Values[0].Value) // timestamp 1
|
||||
assert.InDelta(t, 0.3076923076923077, series.Values[1].Value, 0.0001) // timestamp 2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestGroupKeysDifferentValues(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-1",
|
||||
"state": "running",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
4: 40,
|
||||
5: 50,
|
||||
7: 70,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-2",
|
||||
"state": "idle",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 12,
|
||||
2: 45,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-1",
|
||||
"state": "not_running_chalamet",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-2",
|
||||
"state": "busy",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A/B", map[string]bool{"A": true, "B": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
// Should have 2 result series with all zero values (no label matches)
|
||||
assert.Equal(t, 2, len(result))
|
||||
|
||||
for _, series := range result {
|
||||
for _, value := range series.Values {
|
||||
assert.Equal(t, 0.0, value.Value) // All values should be 0 due to default zero
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestLeftSideSuperset(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-1",
|
||||
"state": "running",
|
||||
"os.type": "linux",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
4: 40,
|
||||
5: 50,
|
||||
7: 70,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-2",
|
||||
"state": "idle",
|
||||
"os.type": "linux",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 12,
|
||||
2: 45,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"state": "running",
|
||||
"os.type": "linux",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"state": "busy",
|
||||
"os.type": "linux",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A/B", map[string]bool{"A": true, "B": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
// Should have 2 result series
|
||||
assert.Equal(t, 2, len(result))
|
||||
|
||||
// Find the running series and verify calculation
|
||||
for _, series := range result {
|
||||
hasRunning := false
|
||||
hasHost := false
|
||||
for _, label := range series.Labels {
|
||||
if label.Key.Name == "state" && label.Value == "running" {
|
||||
hasRunning = true
|
||||
}
|
||||
if label.Key.Name == "host_name" {
|
||||
hasHost = true
|
||||
}
|
||||
}
|
||||
|
||||
if hasRunning && hasHost {
|
||||
// This should be the matched series
|
||||
assert.Equal(t, float64(10)/float64(22), series.Values[0].Value) // timestamp 1
|
||||
assert.InDelta(t, 0.3076923076923077, series.Values[1].Value, 0.0001) // timestamp 2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestNoDefaultZero(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 30,
|
||||
3: 40,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
// No default zero - should have no results since label sets don't match
|
||||
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
|
||||
// Should have no result series since labels don't match and no default zero
|
||||
assert.Equal(t, 0, len(result))
|
||||
}
|
||||
|
||||
func TestMixedQueries(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "frontend",
|
||||
"operation": "GET /api",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"C": createFormulaTestTimeSeriesData("C", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"service_name": "redis",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 30,
|
||||
2: 50,
|
||||
3: 45,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
evaluator, err := NewFormulaEvaluator("A / B", map[string]bool{"A": true, "B": true, "C": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
// Should have 1 result series (only A and B have matching labels)
|
||||
assert.Equal(t, 1, len(result))
|
||||
|
||||
// Verify the result is A/B = 1 for matching timestamps
|
||||
series := result[0]
|
||||
assert.Len(t, series.Values, 2)
|
||||
assert.Equal(t, 1.0, series.Values[0].Value) // 10/10
|
||||
assert.Equal(t, 1.0, series.Values[1].Value) // 20/20
|
||||
}
|
||||
|
||||
func TestComplexExpression(t *testing.T) {
|
||||
tsData := map[string]*TimeSeriesData{
|
||||
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"state": "running",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
4: 40,
|
||||
5: 50,
|
||||
7: 70,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"state": "idle",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 12,
|
||||
2: 45,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-1",
|
||||
"state": "running",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-2",
|
||||
"state": "idle",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 22,
|
||||
2: 65,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
"C": createFormulaTestTimeSeriesData("C", []*TimeSeries{
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-1",
|
||||
"state": "running",
|
||||
"os.type": "linux",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 10,
|
||||
2: 20,
|
||||
4: 40,
|
||||
5: 50,
|
||||
7: 70,
|
||||
}),
|
||||
},
|
||||
{
|
||||
Labels: createLabels(map[string]string{
|
||||
"host_name": "ip-10-420-69-2",
|
||||
"state": "idle",
|
||||
"os.type": "linux",
|
||||
}),
|
||||
Values: createValues(map[int64]float64{
|
||||
1: 12,
|
||||
2: 45,
|
||||
3: 30,
|
||||
4: 40,
|
||||
5: 50,
|
||||
}),
|
||||
},
|
||||
}),
|
||||
}
|
||||
|
||||
// Complex expression: A/B + C
|
||||
evaluator, err := NewFormulaEvaluator("A/B + C", map[string]bool{"A": true, "B": true, "C": true})
|
||||
require.NoError(t, err)
|
||||
|
||||
result, err := evaluator.EvaluateFormula(tsData)
|
||||
require.NoError(t, err)
|
||||
require.NotNil(t, result)
|
||||
|
||||
// Should have 2 result series
|
||||
assert.Equal(t, 2, len(result))
|
||||
|
||||
// Verify the complex calculation: A/B + C for the first series
|
||||
for _, series := range result {
|
||||
hasRunning := false
|
||||
hasHost := false
|
||||
for _, label := range series.Labels {
|
||||
if label.Key.Name == "state" && label.Value == "running" {
|
||||
hasRunning = true
|
||||
}
|
||||
if label.Key.Name == "host_name" {
|
||||
hasHost = true
|
||||
}
|
||||
}
|
||||
|
||||
if hasRunning && hasHost {
|
||||
// timestamp 1: 10/22 + 10 = 10.45454545454545
|
||||
expectedVal1 := 10.0/22.0 + 10.0
|
||||
assert.InDelta(t, expectedVal1, series.Values[0].Value, 0.0001)
|
||||
|
||||
// timestamp 2: 20/65 + 20 = 20.3076923076923077
|
||||
expectedVal2 := 20.0/65.0 + 20.0
|
||||
assert.InDelta(t, expectedVal2, series.Values[1].Value, 0.0001)
|
||||
}
|
||||
}
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user