# ๐Ÿญ AI Agent Factory with Claude Code Subagents A powerful yet simple orchestration framework that leverages Claude Code's subagent capabilities to autonomously build AI agents using Pydantic AI. This system transforms even basic requirements into fully-functional, tested, and documented AI agents through a coordinated workflow of specialized subagents. This can achieve in minutes what traditionally took hours or days of development. > **Full Example**: For a complete, runnable AI agent built with this framework, see the [Hybrid Search RAG Agent](agents/rag_agent) which includes full setup instructions and documentation. ## ๐Ÿšฆ Getting Started 1. **Request an agent**: Open Claude Code in this directory and ask for an AI Agent (see examples below, your prompt can be simple) 2. **Answer clarifications**: Provide 2-3 quick answers about your needs 3. **Watch the magic**: Subagents work in parallel to build your agent in a new folder in `agents/` 4. **Receive your agent**: Complete with tests, docs, and setup instructions ## ๐ŸŽฏ Why Subagents? Claude Code subagents have been all the rage, and for good reason. With subagents we get: ### **Parallel Execution & Scalability** - Run many specialized agents simultaneously, dramatically reducing development time - Each subagent operates independently with its own context window - Orchestrate complex workflows without context pollution or token limitations ### **Specialized System Prompts** - Each subagent has a focused, task-specific prompt optimized for its role - Prevents prompt dilution and maintains specialized expertise across tasks - Enables deep domain knowledge without compromising general capabilities ### **Modular Architecture** - Cleanly separated concerns with independent configuration and tools - Reusable components that can be versioned and shared across projects - Easy to extend, modify, or replace individual subagents without affecting others ## ๐Ÿ—๏ธ Subagent Workflow Architecture ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ User Request โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Phase 0: Clarify โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Phase 1: Planner โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Phase 2: Parallel Development โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ Prompt โ”‚ Tool โ”‚ Dependency โ”‚ โ”‚ โ”‚ Engineer โ”‚ Integrator โ”‚ Manager โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Phase 3: Implement โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Phase 4: Validator โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Phase 5: Delivery โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### Workflow Phases for the AI Agent Factory 1. **Phase 0: Clarification** - Main agent asks targeted questions to understand requirements 2. **Phase 1: Requirements Documentation** - Planner subagent creates comprehensive specifications 3. **Phase 2: Parallel Component Development** - Three specialized subagents work simultaneously: - **Prompt Engineer**: Designs optimal system prompts - **Tool Integrator**: Plans tool implementations and API integrations - **Dependency Manager**: Configures environment and dependencies 4. **Phase 3: Implementation** - Main agent builds the complete agent using specifications 5. **Phase 4: Validation** - Validator subagent creates tests and verifies functionality 6. **Phase 5: Delivery** - Documentation and final packaging ## ๐Ÿ“ Project Structure ``` . โ”œโ”€โ”€ CLAUDE.md # Central orchestration rules and workflow โ”œโ”€โ”€ agents/ # Generated AI agents โ”‚ โ”œโ”€โ”€ rag_agent/ # Example: Complete RAG agent implementation โ”‚ โ””โ”€โ”€ your_agent_here/ # Whatever agent you create with the factory will go here โ”œโ”€โ”€ examples/ # Pydantic AI patterns and references โ”‚ โ”œโ”€โ”€ main_agent_reference/ # Reference implementation patterns โ”‚ โ””โ”€โ”€ rag_pipeline/ # RAG infrastructure components โ”‚ CLAUDE.md # The global rules that instruct Claude Code on the AI Agent Factory workflow โ””โ”€โ”€ README.md # This file ``` ## ๐Ÿค– The Subagents ### **pydantic-ai-planner** Creates minimal, focused requirements documents (INITIAL.md) with MVP mindset. Analyzes user needs and produces clear specifications for agent development. ### **pydantic-ai-prompt-engineer** Designs concise system prompts (100-300 words) that define agent behavior. Specializes in creating clear, effective prompts for Pydantic AI agents. ### **pydantic-ai-tool-integrator** Plans tool specifications focusing on 2-3 essential functions. Defines tool parameters, error handling, and integration patterns. ### **pydantic-ai-dependency-manager** Configures minimal dependencies and environment variables. Sets up model providers, database connections, and agent initialization. ### **pydantic-ai-validator** Creates comprehensive test suites using TestModel and FunctionModel. Validates requirements, tests functionality, and ensures production readiness. ## ๐ŸŽจ CLAUDE.md - The Orchestration Engine The `CLAUDE.md` file is the heart of the system, containing: - **Workflow triggers**: Patterns that activate the agent factory - **Phase definitions**: Detailed instructions for each development phase - **Subagent prompts**: Specialized instructions for each subagent - **Quality gates**: Validation criteria for each phase - **Integration rules**: How components work together Key features: - Automatic workflow recognition from user requests - Parallel subagent invocation for optimal performance - Archon integration for project management (optional) - Comprehensive error handling and recovery ## ๐Ÿš€ Example Prompts ### Simple Agents ``` "Build an AI agent that can search the web" "Create an agent for summarizing documents" "I need an assistant that can query databases" ``` ### Complex Agents ``` "Build a customer support agent that integrates with Slack and searches our knowledge base" "Create a data analysis agent that can query PostgreSQL and generate visualizations" "Implement a content generation agent with brand voice customization and SEO optimization" ``` ### Domain-Specific Agents ``` "Build a financial analysis agent that can process earnings reports" "Create a code review agent that follows our team's style guide" "Implement a research agent that can search academic papers and summarize findings" ``` ## ๐Ÿ”— Optional Archon Integration When [Archon](https://archon.diy) is available through MCP, the system provides enhanced project management: - **Automatic project creation** with task tracking - **Status updates** as each phase progresses - **RAG-powered research** during implementation - **Persistent project history** for iteration and improvement The Archon integration is optionalโ€”the system works perfectly without it, using local TodoWrite for task tracking. ## ๐Ÿ’ก Key Benefits ### **Speed** - Complete agent in 10-15 minutes vs hours of manual development - Parallel processing reduces sequential bottlenecks - Automated testing and validation included ### **Quality** - Consistent architecture following best practices - Comprehensive testing with 80%+ coverage - Production-ready with error handling and logging ### **Flexibility** - Works with any LLM provider (OpenAI, Anthropic, Gemini, Ollama) - Supports various databases (PostgreSQL, SQLite, Redis) - Extensible for custom requirements ### **Maintainability** - Clean separation of concerns - Well-documented code and APIs - Reusable components and patterns ## ๐Ÿ“š Pydantic AI Integration All agents are built using [Pydantic AI](https://ai.pydantic.dev/), providing: - **Type Safety**: Full type hints and runtime validation - **Structured Outputs**: Reliable, schema-validated responses - **Dependency Injection**: Clean separation of concerns - **Testing Support**: TestModel and FunctionModel for comprehensive testing - **Multi-Provider**: Support for OpenAI, Anthropic, Gemini, and more ## ๐Ÿ› ๏ธ Components Explained ### Planning Documents Each agent includes four planning documents: - `INITIAL.md` - Requirements and specifications - `prompts.md` - System prompt design - `tools.md` - Tool specifications - `dependencies.md` - Configuration and dependencies ### Implementation Files - `agent.py` - Main agent logic - `tools.py` - Tool implementations - `settings.py` - Environment configuration - `providers.py` - LLM providers - `dependencies.py` - Dependency injection - `cli.py` - Command-line interface ### Testing & Validation - Comprehensive test suite with pytest - TestModel for development testing - FunctionModel for behavior validation - Integration tests for end-to-end verification The system handles everything else from requirements analysis to implementation, testing, and documentation. ## ๐Ÿ”ฎ Future Enhancements - Additional specialized subagents for specific domains - Enhanced pattern library for common use cases - Automated deployment pipeline generation - Cross-agent communication protocols - Real-time collaboration features