mirror of
https://github.com/coleam00/context-engineering-intro.git
synced 2025-12-18 10:15:27 +00:00
55 lines
2.3 KiB
Markdown
55 lines
2.3 KiB
Markdown
|
|
# Execute Pydantic AI Agent PRP
|
||
|
|
|
||
|
|
Implement a Pydantic AI agent using the PRP file.
|
||
|
|
|
||
|
|
## PRP File: $ARGUMENTS
|
||
|
|
|
||
|
|
## Execution Process
|
||
|
|
|
||
|
|
1. **Load PRP**
|
||
|
|
- Read the specified Pydantic AI PRP file
|
||
|
|
- Understand all agent requirements and research findings
|
||
|
|
- Follow all instructions in the PRP and extend research if needed
|
||
|
|
- Review main_agent_reference patterns for implementation guidance
|
||
|
|
- Do more web searches and Pydantic AI documentation review as needed
|
||
|
|
|
||
|
|
2. **ULTRATHINK**
|
||
|
|
- Think hard before executing the agent implementation plan
|
||
|
|
- Break down agent development into smaller steps using your todos tools
|
||
|
|
- Use the TodoWrite tool to create and track your agent implementation plan
|
||
|
|
- Follow main_agent_reference patterns for configuration and structure
|
||
|
|
- Plan agent.py, tools.py, dependencies.py, and testing approach
|
||
|
|
|
||
|
|
3. **Execute the plan**
|
||
|
|
- Implement the Pydantic AI agent following the PRP
|
||
|
|
- Create agent with environment-based configuration (settings.py, providers.py)
|
||
|
|
- Use string output by default (no result_type unless structured output needed)
|
||
|
|
- Implement tools with @agent.tool decorators and proper error handling
|
||
|
|
- Add comprehensive testing with TestModel and FunctionModel
|
||
|
|
|
||
|
|
4. **Validate**
|
||
|
|
- Test agent import and instantiation
|
||
|
|
- Run TestModel validation for rapid development testing
|
||
|
|
- Test tool registration and functionality
|
||
|
|
- Run pytest test suite if created
|
||
|
|
- Verify agent follows main_agent_reference patterns
|
||
|
|
|
||
|
|
5. **Complete**
|
||
|
|
- Ensure all PRP checklist items done
|
||
|
|
- Test agent with example queries
|
||
|
|
- Verify security patterns (environment variables, error handling)
|
||
|
|
- Report completion status
|
||
|
|
- Read the PRP again to ensure complete implementation
|
||
|
|
|
||
|
|
6. **Reference the PRP**
|
||
|
|
- You can always reference the PRP again if needed
|
||
|
|
|
||
|
|
## Pydantic AI-Specific Patterns to Follow
|
||
|
|
|
||
|
|
- **Configuration**: Use environment-based setup like main_agent_reference
|
||
|
|
- **Output**: Default to string output, only use result_type when validation needed
|
||
|
|
- **Tools**: Use @agent.tool with RunContext for dependency injection
|
||
|
|
- **Testing**: Include TestModel validation for development
|
||
|
|
- **Security**: Environment variables for API keys, proper error handling
|
||
|
|
|
||
|
|
Note: If validation fails, use error patterns in PRP to fix and retry. Follow main_agent_reference for proven Pydantic AI implementation patterns.
|