SuperClaude/Framework-Hooks/cache/session_91a37b4e-f0f3-41bb-9143-01dc8ce45a2c.json
NomenAK da0a356eec feat: Implement YAML-first declarative intelligence architecture
Revolutionary transformation from hardcoded Python intelligence to hot-reloadable
YAML patterns, enabling dynamic configuration without code changes.

## Phase 1: Foundation Intelligence Complete

### YAML Intelligence Patterns (6 files)
- intelligence_patterns.yaml: Multi-dimensional pattern recognition with adaptive learning
- mcp_orchestration.yaml: Server selection decision trees with load balancing
- hook_coordination.yaml: Parallel execution patterns with dependency resolution
- performance_intelligence.yaml: Resource zones and auto-optimization triggers
- validation_intelligence.yaml: Health scoring and proactive diagnostic patterns
- user_experience.yaml: Project detection and smart UX adaptations

### Python Infrastructure Enhanced (4 components)
- intelligence_engine.py: Generic YAML pattern interpreter with hot-reload
- learning_engine.py: Enhanced with YAML intelligence integration
- yaml_loader.py: Added intelligence configuration helper methods
- validate_system.py: New YAML-driven validation with health scoring

### Key Features Implemented
- Hot-reload intelligence: Update patterns without code changes or restarts
- Declarative configuration: All intelligence logic expressed in YAML
- Graceful fallbacks: System works correctly even with missing YAML files
- Multi-pattern coordination: Intelligent recommendations from multiple sources
- Health scoring: Component-weighted validation with predictive diagnostics
- Generic architecture: Single engine consumes all intelligence pattern types

### Testing Results
 All components integrate correctly
 Hot-reload mechanism functional
 Graceful error handling verified
 YAML-driven validation operational
 Health scoring system working (detected real system issues)

This enables users to modify intelligence behavior by editing YAML files,
add new pattern types without coding, and hot-reload improvements in real-time.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-06 13:26:04 +02:00

82 lines
1.9 KiB
JSON

{
"session_id": "91a37b4e-f0f3-41bb-9143-01dc8ce45a2c",
"superclaude_enabled": true,
"initialization_timestamp": 1754476722.0451996,
"active_modes": [],
"mode_configurations": {},
"mcp_servers": {
"enabled_servers": [
"morphllm",
"sequential"
],
"activation_order": [
"morphllm",
"sequential"
],
"coordination_strategy": "collaborative"
},
"compression": {
"compression_level": "minimal",
"estimated_savings": {
"token_reduction": 0.15,
"time_savings": 0.05
},
"quality_impact": 0.98,
"selective_compression_enabled": true
},
"performance": {
"resource_monitoring_enabled": true,
"optimization_targets": {
"session_start_ms": 50,
"tool_routing_ms": 200,
"validation_ms": 100,
"compression_ms": 150,
"enabled": true,
"real_time_tracking": true,
"target_enforcement": true,
"optimization_suggestions": true,
"performance_analytics": true
},
"delegation_threshold": 0.6
},
"learning": {
"adaptation_enabled": true,
"effectiveness_tracking": true,
"applied_adaptations": [
{
"id": "adapt_1754413397_2",
"confidence": 0.8,
"effectiveness": 1.0
},
{
"id": "adapt_1754411689_0",
"confidence": 0.9,
"effectiveness": 0.8
},
{
"id": "adapt_1754411724_1",
"confidence": 0.8,
"effectiveness": 0.9
}
]
},
"context": {
"project_type": "unknown",
"complexity_score": 0.0,
"brainstorming_mode": false,
"user_expertise": "intermediate"
},
"quality_gates": [
"syntax_validation"
],
"metadata": {
"framework_version": "1.0.0",
"hook_version": "session_start_1.0",
"configuration_source": "superclaude_intelligence"
},
"performance_metrics": {
"initialization_time_ms": 31.55827522277832,
"target_met": true,
"efficiency_score": 0.3688344955444336
}
}