mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-17 09:46:06 +00:00
* refactor: PM Agent complete independence from external MCP servers ## Summary Implement graceful degradation to ensure PM Agent operates fully without any MCP server dependencies. MCP servers now serve as optional enhancements rather than required components. ## Changes ### Responsibility Separation (NEW) - **PM Agent**: Development workflow orchestration (PDCA cycle, task management) - **mindbase**: Memory management (long-term, freshness, error learning) - **Built-in memory**: Session-internal context (volatile) ### 3-Layer Memory Architecture with Fallbacks 1. **Built-in Memory** [OPTIONAL]: Session context via MCP memory server 2. **mindbase** [OPTIONAL]: Long-term semantic search via airis-mcp-gateway 3. **Local Files** [ALWAYS]: Core functionality in docs/memory/ ### Graceful Degradation Implementation - All MCP operations marked with [ALWAYS] or [OPTIONAL] - Explicit IF/ELSE fallback logic for every MCP call - Dual storage: Always write to local files + optionally to mindbase - Smart lookup: Semantic search (if available) → Text search (always works) ### Key Fallback Strategies **Session Start**: - mindbase available: search_conversations() for semantic context - mindbase unavailable: Grep docs/memory/*.jsonl for text-based lookup **Error Detection**: - mindbase available: Semantic search for similar past errors - mindbase unavailable: Grep docs/mistakes/ + solutions_learned.jsonl **Knowledge Capture**: - Always: echo >> docs/memory/patterns_learned.jsonl (persistent) - Optional: mindbase.store() for semantic search enhancement ## Benefits - ✅ Zero external dependencies (100% functionality without MCP) - ✅ Enhanced capabilities when MCPs available (semantic search, freshness) - ✅ No functionality loss, only reduced search intelligence - ✅ Transparent degradation (no error messages, automatic fallback) ## Related Research - Serena MCP investigation: Exposes tools (not resources), memory = markdown files - mindbase superiority: PostgreSQL + pgvector > Serena memory features - Best practices alignment: /Users/kazuki/github/airis-mcp-gateway/docs/mcp-best-practices.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * chore: add PR template and pre-commit config - Add structured PR template with Git workflow checklist - Add pre-commit hooks for secret detection and Conventional Commits - Enforce code quality gates (YAML/JSON/Markdown lint, shellcheck) NOTE: Execute pre-commit inside Docker container to avoid host pollution: docker compose exec workspace uv tool install pre-commit docker compose exec workspace pre-commit run --all-files 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * docs: update PM Agent context with token efficiency architecture - Add Layer 0 Bootstrap (150 tokens, 95% reduction) - Document Intent Classification System (5 complexity levels) - Add Progressive Loading strategy (5-layer) - Document mindbase integration incentive (38% savings) - Update with 2025-10-17 redesign details * refactor: PM Agent command with progressive loading - Replace auto-loading with User Request First philosophy - Add 5-layer progressive context loading - Implement intent classification system - Add workflow metrics collection (.jsonl) - Document graceful degradation strategy * fix: installer improvements Update installer logic for better reliability * docs: add comprehensive development documentation - Add architecture overview - Add PM Agent improvements analysis - Add parallel execution architecture - Add CLI install improvements - Add code style guide - Add project overview - Add install process analysis * docs: add research documentation Add LLM agent token efficiency research and analysis * docs: add suggested commands reference * docs: add session logs and testing documentation - Add session analysis logs - Add testing documentation * feat: migrate CLI to typer + rich for modern UX ## What Changed ### New CLI Architecture (typer + rich) - Created `superclaude/cli/` module with modern typer-based CLI - Replaced custom UI utilities with rich native features - Added type-safe command structure with automatic validation ### Commands Implemented - **install**: Interactive installation with rich UI (progress, panels) - **doctor**: System diagnostics with rich table output - **config**: API key management with format validation ### Technical Improvements - Dependencies: Added typer>=0.9.0, rich>=13.0.0, click>=8.0.0 - Entry Point: Updated pyproject.toml to use `superclaude.cli.app:cli_main` - Tests: Added comprehensive smoke tests (11 passed) ### User Experience Enhancements - Rich formatted help messages with panels and tables - Automatic input validation with retry loops - Clear error messages with actionable suggestions - Non-interactive mode support for CI/CD ## Testing ```bash uv run superclaude --help # ✓ Works uv run superclaude doctor # ✓ Rich table output uv run superclaude config show # ✓ API key management pytest tests/test_cli_smoke.py # ✓ 11 passed, 1 skipped ``` ## Migration Path - ✅ P0: Foundation complete (typer + rich + smoke tests) - 🔜 P1: Pydantic validation models (next sprint) - 🔜 P2: Enhanced error messages (next sprint) - 🔜 P3: API key retry loops (next sprint) ## Performance Impact - **Code Reduction**: Prepared for -300 lines (custom UI → rich) - **Type Safety**: Automatic validation from type hints - **Maintainability**: Framework primitives vs custom code 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate documentation directories Merged claudedocs/ into docs/research/ for consistent documentation structure. Changes: - Moved all claudedocs/*.md files to docs/research/ - Updated all path references in documentation (EN/KR) - Updated RULES.md and research.md command templates - Removed claudedocs/ directory - Removed ClaudeDocs/ from .gitignore Benefits: - Single source of truth for all research reports - PEP8-compliant lowercase directory naming - Clearer documentation organization - Prevents future claudedocs/ directory creation 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * perf: reduce /sc:pm command output from 1652 to 15 lines - Remove 1637 lines of documentation from command file - Keep only minimal bootstrap message - 99% token reduction on command execution - Detailed specs remain in superclaude/agents/pm-agent.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * perf: split PM Agent into execution workflows and guide - Reduce pm-agent.md from 735 to 429 lines (42% reduction) - Move philosophy/examples to docs/agents/pm-agent-guide.md - Execution workflows (PDCA, file ops) stay in pm-agent.md - Guide (examples, quality standards) read once when needed Token savings: - Agent loading: ~6K → ~3.5K tokens (42% reduction) - Total with pm.md: 71% overall reduction 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate PM Agent optimization and pending changes PM Agent optimization (already committed separately): - superclaude/commands/pm.md: 1652→14 lines - superclaude/agents/pm-agent.md: 735→429 lines - docs/agents/pm-agent-guide.md: new guide file Other pending changes: - setup: framework_docs, mcp, logger, remove ui.py - superclaude: __main__, cli/app, cli/commands/install - tests: test_ui updates - scripts: workflow metrics analysis tools - docs/memory: session state updates 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: simplify MCP installer to unified gateway with legacy mode ## Changes ### MCP Component (setup/components/mcp.py) - Simplified to single airis-mcp-gateway by default - Added legacy mode for individual official servers (sequential-thinking, context7, magic, playwright) - Dynamic prerequisites based on mode: - Default: uv + claude CLI only - Legacy: node (18+) + npm + claude CLI - Removed redundant server definitions ### CLI Integration - Added --legacy flag to setup/cli/commands/install.py - Added --legacy flag to superclaude/cli/commands/install.py - Config passes legacy_mode to component installer ## Benefits - ✅ Simpler: 1 gateway vs 9+ individual servers - ✅ Lighter: No Node.js/npm required (default mode) - ✅ Unified: All tools in one gateway (sequential-thinking, context7, magic, playwright, serena, morphllm, tavily, chrome-devtools, git, puppeteer) - ✅ Flexible: --legacy flag for official servers if needed ## Usage ```bash superclaude install # Default: airis-mcp-gateway (推奨) superclaude install --legacy # Legacy: individual official servers ``` 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: rename CoreComponent to FrameworkDocsComponent and add PM token tracking ## Changes ### Component Renaming (setup/components/) - Renamed CoreComponent → FrameworkDocsComponent for clarity - Updated all imports in __init__.py, agents.py, commands.py, mcp_docs.py, modes.py - Better reflects the actual purpose (framework documentation files) ### PM Agent Enhancement (superclaude/commands/pm.md) - Added token usage tracking instructions - PM Agent now reports: 1. Current token usage from system warnings 2. Percentage used (e.g., "27% used" for 54K/200K) 3. Status zone: 🟢 <75% | 🟡 75-85% | 🔴 >85% - Helps prevent token exhaustion during long sessions ### UI Utilities (setup/utils/ui.py) - Added new UI utility module for installer - Provides consistent user interface components ## Benefits - ✅ Clearer component naming (FrameworkDocs vs Core) - ✅ PM Agent token awareness for efficiency - ✅ Better visual feedback with status zones 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor(pm-agent): minimize output verbosity (471→284 lines, 40% reduction) **Problem**: PM Agent generated excessive output with redundant explanations - "System Status Report" with decorative formatting - Repeated "Common Tasks" lists user already knows - Verbose session start/end protocols - Duplicate file operations documentation **Solution**: Compress without losing functionality - Session Start: Reduced to symbol-only status (🟢 branch | nM nD | token%) - Session End: Compressed to essential actions only - File Operations: Consolidated from 2 sections to 1 line reference - Self-Improvement: 5 phases → 1 unified workflow - Output Rules: Explicit constraints to prevent Claude over-explanation **Quality Preservation**: - ✅ All core functions retained (PDCA, memory, patterns, mistakes) - ✅ PARALLEL Read/Write preserved (performance critical) - ✅ Workflow unchanged (session lifecycle intact) - ✅ Added output constraints (prevents verbose generation) **Reduction Method**: - Deleted: Explanatory text, examples, redundant sections - Retained: Action definitions, file paths, core workflows - Added: Explicit output constraints to enforce minimalism **Token Impact**: 40% reduction in agent documentation size **Before**: Verbose multi-section report with task lists **After**: Single line status: 🟢 integration | 15M 17D | 36% 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * refactor: consolidate MCP integration to unified gateway **Changes**: - Remove individual MCP server docs (superclaude/mcp/*.md) - Remove MCP server configs (superclaude/mcp/configs/*.json) - Delete MCP docs component (setup/components/mcp_docs.py) - Simplify installer (setup/core/installer.py) - Update components for unified gateway approach **Rationale**: - Unified gateway (airis-mcp-gateway) provides all MCP servers - Individual docs/configs no longer needed (managed centrally) - Reduces maintenance burden and file count - Simplifies installation process **Files Removed**: 17 MCP files (docs + configs) **Installer Changes**: Removed legacy MCP installation logic 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * chore: update version and component metadata - Bump version (pyproject.toml, setup/__init__.py) - Update CLAUDE.md import service references - Reflect component structure changes 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: kazuki <kazuki@kazukinoMacBook-Air.local> Co-authored-by: Claude <noreply@anthropic.com>
332 lines
12 KiB
Python
Executable File
332 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
"""
|
|
Workflow Metrics Analysis Script
|
|
|
|
Analyzes workflow_metrics.jsonl for continuous optimization and A/B testing.
|
|
|
|
Usage:
|
|
python scripts/analyze_workflow_metrics.py --period week
|
|
python scripts/analyze_workflow_metrics.py --period month
|
|
python scripts/analyze_workflow_metrics.py --task-type bug_fix
|
|
"""
|
|
|
|
import json
|
|
import argparse
|
|
from pathlib import Path
|
|
from datetime import datetime, timedelta
|
|
from typing import Dict, List, Optional
|
|
from collections import defaultdict
|
|
import statistics
|
|
|
|
|
|
class WorkflowMetricsAnalyzer:
|
|
"""Analyze workflow metrics for optimization"""
|
|
|
|
def __init__(self, metrics_file: Path):
|
|
self.metrics_file = metrics_file
|
|
self.metrics: List[Dict] = []
|
|
self._load_metrics()
|
|
|
|
def _load_metrics(self):
|
|
"""Load metrics from JSONL file"""
|
|
if not self.metrics_file.exists():
|
|
print(f"Warning: {self.metrics_file} not found")
|
|
return
|
|
|
|
with open(self.metrics_file, 'r') as f:
|
|
for line in f:
|
|
if line.strip():
|
|
self.metrics.append(json.loads(line))
|
|
|
|
print(f"Loaded {len(self.metrics)} metric records")
|
|
|
|
def filter_by_period(self, period: str) -> List[Dict]:
|
|
"""Filter metrics by time period"""
|
|
now = datetime.now()
|
|
|
|
if period == "week":
|
|
cutoff = now - timedelta(days=7)
|
|
elif period == "month":
|
|
cutoff = now - timedelta(days=30)
|
|
elif period == "all":
|
|
return self.metrics
|
|
else:
|
|
raise ValueError(f"Invalid period: {period}")
|
|
|
|
filtered = [
|
|
m for m in self.metrics
|
|
if datetime.fromisoformat(m['timestamp']) >= cutoff
|
|
]
|
|
|
|
print(f"Filtered to {len(filtered)} records in last {period}")
|
|
return filtered
|
|
|
|
def analyze_by_task_type(self, metrics: List[Dict]) -> Dict:
|
|
"""Analyze metrics grouped by task type"""
|
|
by_task = defaultdict(list)
|
|
|
|
for m in metrics:
|
|
by_task[m['task_type']].append(m)
|
|
|
|
results = {}
|
|
for task_type, task_metrics in by_task.items():
|
|
results[task_type] = {
|
|
'count': len(task_metrics),
|
|
'avg_tokens': statistics.mean(m['tokens_used'] for m in task_metrics),
|
|
'avg_time_ms': statistics.mean(m['time_ms'] for m in task_metrics),
|
|
'success_rate': sum(m['success'] for m in task_metrics) / len(task_metrics) * 100,
|
|
'avg_files_read': statistics.mean(m.get('files_read', 0) for m in task_metrics),
|
|
}
|
|
|
|
return results
|
|
|
|
def analyze_by_complexity(self, metrics: List[Dict]) -> Dict:
|
|
"""Analyze metrics grouped by complexity level"""
|
|
by_complexity = defaultdict(list)
|
|
|
|
for m in metrics:
|
|
by_complexity[m['complexity']].append(m)
|
|
|
|
results = {}
|
|
for complexity, comp_metrics in by_complexity.items():
|
|
results[complexity] = {
|
|
'count': len(comp_metrics),
|
|
'avg_tokens': statistics.mean(m['tokens_used'] for m in comp_metrics),
|
|
'avg_time_ms': statistics.mean(m['time_ms'] for m in comp_metrics),
|
|
'success_rate': sum(m['success'] for m in comp_metrics) / len(comp_metrics) * 100,
|
|
}
|
|
|
|
return results
|
|
|
|
def analyze_by_workflow(self, metrics: List[Dict]) -> Dict:
|
|
"""Analyze metrics grouped by workflow variant"""
|
|
by_workflow = defaultdict(list)
|
|
|
|
for m in metrics:
|
|
by_workflow[m['workflow_id']].append(m)
|
|
|
|
results = {}
|
|
for workflow_id, wf_metrics in by_workflow.items():
|
|
results[workflow_id] = {
|
|
'count': len(wf_metrics),
|
|
'avg_tokens': statistics.mean(m['tokens_used'] for m in wf_metrics),
|
|
'median_tokens': statistics.median(m['tokens_used'] for m in wf_metrics),
|
|
'avg_time_ms': statistics.mean(m['time_ms'] for m in wf_metrics),
|
|
'success_rate': sum(m['success'] for m in wf_metrics) / len(wf_metrics) * 100,
|
|
}
|
|
|
|
return results
|
|
|
|
def identify_best_workflows(self, metrics: List[Dict]) -> Dict[str, str]:
|
|
"""Identify best workflow for each task type"""
|
|
by_task_workflow = defaultdict(lambda: defaultdict(list))
|
|
|
|
for m in metrics:
|
|
by_task_workflow[m['task_type']][m['workflow_id']].append(m)
|
|
|
|
best_workflows = {}
|
|
for task_type, workflows in by_task_workflow.items():
|
|
best_workflow = None
|
|
best_score = float('inf')
|
|
|
|
for workflow_id, wf_metrics in workflows.items():
|
|
# Score = avg_tokens (lower is better)
|
|
avg_tokens = statistics.mean(m['tokens_used'] for m in wf_metrics)
|
|
success_rate = sum(m['success'] for m in wf_metrics) / len(wf_metrics)
|
|
|
|
# Only consider if success rate >= 95%
|
|
if success_rate >= 0.95:
|
|
if avg_tokens < best_score:
|
|
best_score = avg_tokens
|
|
best_workflow = workflow_id
|
|
|
|
if best_workflow:
|
|
best_workflows[task_type] = best_workflow
|
|
|
|
return best_workflows
|
|
|
|
def identify_inefficiencies(self, metrics: List[Dict]) -> List[Dict]:
|
|
"""Identify inefficient patterns"""
|
|
inefficiencies = []
|
|
|
|
# Expected token budgets by complexity
|
|
budgets = {
|
|
'ultra-light': 800,
|
|
'light': 2000,
|
|
'medium': 5000,
|
|
'heavy': 20000,
|
|
'ultra-heavy': 50000
|
|
}
|
|
|
|
for m in metrics:
|
|
issues = []
|
|
|
|
# Check token budget overrun
|
|
expected_budget = budgets.get(m['complexity'], 5000)
|
|
if m['tokens_used'] > expected_budget * 1.3: # 30% over budget
|
|
issues.append(f"Token overrun: {m['tokens_used']} vs {expected_budget}")
|
|
|
|
# Check success rate
|
|
if not m['success']:
|
|
issues.append("Task failed")
|
|
|
|
# Check time performance (light tasks should be fast)
|
|
if m['complexity'] in ['ultra-light', 'light'] and m['time_ms'] > 10000:
|
|
issues.append(f"Slow execution: {m['time_ms']}ms for {m['complexity']} task")
|
|
|
|
if issues:
|
|
inefficiencies.append({
|
|
'timestamp': m['timestamp'],
|
|
'task_type': m['task_type'],
|
|
'complexity': m['complexity'],
|
|
'workflow_id': m['workflow_id'],
|
|
'issues': issues
|
|
})
|
|
|
|
return inefficiencies
|
|
|
|
def calculate_token_savings(self, metrics: List[Dict]) -> Dict:
|
|
"""Calculate token savings vs unlimited baseline"""
|
|
# Unlimited baseline estimates
|
|
baseline = {
|
|
'ultra-light': 1000,
|
|
'light': 2500,
|
|
'medium': 7500,
|
|
'heavy': 30000,
|
|
'ultra-heavy': 100000
|
|
}
|
|
|
|
total_actual = 0
|
|
total_baseline = 0
|
|
|
|
for m in metrics:
|
|
total_actual += m['tokens_used']
|
|
total_baseline += baseline.get(m['complexity'], 7500)
|
|
|
|
savings = total_baseline - total_actual
|
|
savings_percent = (savings / total_baseline * 100) if total_baseline > 0 else 0
|
|
|
|
return {
|
|
'total_actual': total_actual,
|
|
'total_baseline': total_baseline,
|
|
'total_savings': savings,
|
|
'savings_percent': savings_percent
|
|
}
|
|
|
|
def generate_report(self, period: str) -> str:
|
|
"""Generate comprehensive analysis report"""
|
|
metrics = self.filter_by_period(period)
|
|
|
|
if not metrics:
|
|
return "No metrics available for analysis"
|
|
|
|
report = []
|
|
report.append("=" * 80)
|
|
report.append(f"WORKFLOW METRICS ANALYSIS REPORT - Last {period}")
|
|
report.append("=" * 80)
|
|
report.append("")
|
|
|
|
# Overall statistics
|
|
report.append("## Overall Statistics")
|
|
report.append(f"Total Tasks: {len(metrics)}")
|
|
report.append(f"Success Rate: {sum(m['success'] for m in metrics) / len(metrics) * 100:.1f}%")
|
|
report.append(f"Avg Tokens: {statistics.mean(m['tokens_used'] for m in metrics):.0f}")
|
|
report.append(f"Avg Time: {statistics.mean(m['time_ms'] for m in metrics):.0f}ms")
|
|
report.append("")
|
|
|
|
# Token savings
|
|
savings = self.calculate_token_savings(metrics)
|
|
report.append("## Token Efficiency")
|
|
report.append(f"Actual Usage: {savings['total_actual']:,} tokens")
|
|
report.append(f"Unlimited Baseline: {savings['total_baseline']:,} tokens")
|
|
report.append(f"Total Savings: {savings['total_savings']:,} tokens ({savings['savings_percent']:.1f}%)")
|
|
report.append("")
|
|
|
|
# By task type
|
|
report.append("## Analysis by Task Type")
|
|
by_task = self.analyze_by_task_type(metrics)
|
|
for task_type, stats in sorted(by_task.items()):
|
|
report.append(f"\n### {task_type}")
|
|
report.append(f" Count: {stats['count']}")
|
|
report.append(f" Avg Tokens: {stats['avg_tokens']:.0f}")
|
|
report.append(f" Avg Time: {stats['avg_time_ms']:.0f}ms")
|
|
report.append(f" Success Rate: {stats['success_rate']:.1f}%")
|
|
report.append(f" Avg Files Read: {stats['avg_files_read']:.1f}")
|
|
|
|
report.append("")
|
|
|
|
# By complexity
|
|
report.append("## Analysis by Complexity")
|
|
by_complexity = self.analyze_by_complexity(metrics)
|
|
for complexity in ['ultra-light', 'light', 'medium', 'heavy', 'ultra-heavy']:
|
|
if complexity in by_complexity:
|
|
stats = by_complexity[complexity]
|
|
report.append(f"\n### {complexity}")
|
|
report.append(f" Count: {stats['count']}")
|
|
report.append(f" Avg Tokens: {stats['avg_tokens']:.0f}")
|
|
report.append(f" Success Rate: {stats['success_rate']:.1f}%")
|
|
|
|
report.append("")
|
|
|
|
# Best workflows
|
|
report.append("## Best Workflows per Task Type")
|
|
best = self.identify_best_workflows(metrics)
|
|
for task_type, workflow_id in sorted(best.items()):
|
|
report.append(f" {task_type}: {workflow_id}")
|
|
|
|
report.append("")
|
|
|
|
# Inefficiencies
|
|
inefficiencies = self.identify_inefficiencies(metrics)
|
|
if inefficiencies:
|
|
report.append("## Inefficiencies Detected")
|
|
report.append(f"Total Issues: {len(inefficiencies)}")
|
|
for issue in inefficiencies[:5]: # Show top 5
|
|
report.append(f"\n {issue['timestamp']}")
|
|
report.append(f" Task: {issue['task_type']} ({issue['complexity']})")
|
|
report.append(f" Workflow: {issue['workflow_id']}")
|
|
for problem in issue['issues']:
|
|
report.append(f" - {problem}")
|
|
|
|
report.append("")
|
|
report.append("=" * 80)
|
|
|
|
return "\n".join(report)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Analyze workflow metrics")
|
|
parser.add_argument(
|
|
'--period',
|
|
choices=['week', 'month', 'all'],
|
|
default='week',
|
|
help='Analysis time period'
|
|
)
|
|
parser.add_argument(
|
|
'--task-type',
|
|
help='Filter by specific task type'
|
|
)
|
|
parser.add_argument(
|
|
'--output',
|
|
help='Output file (default: stdout)'
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Find metrics file
|
|
metrics_file = Path('docs/memory/workflow_metrics.jsonl')
|
|
|
|
analyzer = WorkflowMetricsAnalyzer(metrics_file)
|
|
report = analyzer.generate_report(args.period)
|
|
|
|
if args.output:
|
|
with open(args.output, 'w') as f:
|
|
f.write(report)
|
|
print(f"Report written to {args.output}")
|
|
else:
|
|
print(report)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|