# mcp_intelligence.py - Intelligent MCP Server Management Engine ## Overview The `mcp_intelligence.py` module provides intelligent MCP server activation, coordination, and optimization based on ORCHESTRATOR.md patterns and real-time context analysis. It implements smart server selection, performance-optimized activation sequences, fallback strategies, cross-server coordination, and real-time adaptation based on effectiveness metrics. ## Purpose and Responsibilities ### Primary Functions - **Smart Server Selection**: Context-aware MCP server recommendation and activation - **Performance Optimization**: Optimized activation sequences with cost/benefit analysis - **Fallback Strategy Management**: Robust error handling with alternative server routing - **Cross-Server Coordination**: Intelligent coordination strategies for multi-server operations - **Real-Time Adaptation**: Dynamic adaptation based on server effectiveness and availability ### Intelligence Capabilities - **Hybrid Intelligence Routing**: Morphllm vs Serena decision matrix based on complexity - **Resource-Aware Activation**: Adaptive server selection based on resource constraints - **Performance Monitoring**: Real-time tracking of activation costs and effectiveness - **Coordination Strategy Selection**: Dynamic coordination patterns based on operation characteristics ## Core Classes and Data Structures ### Enumerations #### MCPServerState ```python class MCPServerState(Enum): AVAILABLE = "available" # Server ready for activation UNAVAILABLE = "unavailable" # Server not accessible LOADING = "loading" # Server currently activating ERROR = "error" # Server in error state ``` ### Data Classes #### MCPServerCapability ```python @dataclass class MCPServerCapability: server_name: str # Server identifier primary_functions: List[str] # Core capabilities list performance_profile: str # lightweight|standard|intensive activation_cost_ms: int # Activation time in milliseconds token_efficiency: float # 0.0 to 1.0 efficiency rating quality_impact: float # 0.0 to 1.0 quality improvement rating ``` #### MCPActivationPlan ```python @dataclass class MCPActivationPlan: servers_to_activate: List[str] # Servers to enable activation_order: List[str] # Optimal activation sequence estimated_cost_ms: int # Total activation time estimate efficiency_gains: Dict[str, float] # Expected gains per server fallback_strategy: Dict[str, str] # Fallback mappings coordination_strategy: str # Coordination approach ``` ## Server Capability Definitions ### Server Specifications ```python def _load_server_capabilities(self) -> Dict[str, MCPServerCapability]: capabilities = {} capabilities['context7'] = MCPServerCapability( server_name='context7', primary_functions=['library_docs', 'framework_patterns', 'best_practices'], performance_profile='standard', activation_cost_ms=150, token_efficiency=0.8, quality_impact=0.9 ) capabilities['sequential'] = MCPServerCapability( server_name='sequential', primary_functions=['complex_analysis', 'multi_step_reasoning', 'debugging'], performance_profile='intensive', activation_cost_ms=200, token_efficiency=0.6, quality_impact=0.95 ) capabilities['magic'] = MCPServerCapability( server_name='magic', primary_functions=['ui_components', 'design_systems', 'frontend_generation'], performance_profile='standard', activation_cost_ms=120, token_efficiency=0.85, quality_impact=0.9 ) capabilities['playwright'] = MCPServerCapability( server_name='playwright', primary_functions=['e2e_testing', 'browser_automation', 'performance_testing'], performance_profile='intensive', activation_cost_ms=300, token_efficiency=0.7, quality_impact=0.85 ) capabilities['morphllm'] = MCPServerCapability( server_name='morphllm', primary_functions=['intelligent_editing', 'pattern_application', 'fast_apply'], performance_profile='lightweight', activation_cost_ms=80, token_efficiency=0.9, quality_impact=0.8 ) capabilities['serena'] = MCPServerCapability( server_name='serena', primary_functions=['semantic_analysis', 'project_context', 'memory_management'], performance_profile='standard', activation_cost_ms=100, token_efficiency=0.75, quality_impact=0.95 ) ``` ## Intelligent Activation Planning ### create_activation_plan() ```python def create_activation_plan(self, user_input: str, context: Dict[str, Any], operation_data: Dict[str, Any]) -> MCPActivationPlan: ``` **Planning Pipeline**: 1. **Pattern Detection**: Use PatternDetector to identify server needs 2. **Intelligent Optimization**: Apply context-aware server selection 3. **Activation Sequencing**: Calculate optimal activation order 4. **Cost Estimation**: Predict activation costs and efficiency gains 5. **Fallback Strategy**: Create robust error handling plan 6. **Coordination Strategy**: Determine multi-server coordination approach ### Server Selection Optimization #### Hybrid Intelligence Decision Matrix ```python def _optimize_server_selection(self, recommended_servers: List[str], context: Dict[str, Any], operation_data: Dict[str, Any]) -> List[str]: # Morphllm vs Serena intelligence selection file_count = operation_data.get('file_count', 1) complexity_score = operation_data.get('complexity_score', 0.0) if 'morphllm' in optimized and 'serena' in optimized: # Choose the more appropriate server based on complexity if file_count > 10 or complexity_score > 0.6: optimized.remove('morphllm') # Use Serena for complex operations else: optimized.remove('serena') # Use Morphllm for efficient operations ``` **Decision Criteria**: - **Serena Optimal**: file_count > 10 OR complexity_score > 0.6 - **Morphllm Optimal**: file_count ≤ 10 AND complexity_score ≤ 0.6 #### Resource Constraint Optimization ```python # Resource constraint optimization resource_usage = context.get('resource_usage_percent', 0) if resource_usage > 85: # Remove intensive servers under resource constraints intensive_servers = { name for name, cap in self.server_capabilities.items() if cap.performance_profile == 'intensive' } optimized -= intensive_servers ``` #### Context-Based Auto-Addition ```python # Performance optimization based on operation type operation_type = operation_data.get('operation_type', '') if operation_type in ['read', 'analyze'] and 'sequential' not in optimized: # Add Sequential for analysis operations optimized.add('sequential') # Auto-add Context7 if external libraries detected if operation_data.get('has_external_dependencies', False): optimized.add('context7') ``` ## Activation Sequencing ### Optimal Activation Order ```python def _calculate_activation_order(self, servers: List[str], context: Dict[str, Any]) -> List[str]: ordered = [] # 1. Serena first if present (provides context for others) if 'serena' in servers: ordered.append('serena') servers = [s for s in servers if s != 'serena'] # 2. Context7 early for documentation context if 'context7' in servers: ordered.append('context7') servers = [s for s in servers if s != 'context7'] # 3. Remaining servers by activation cost (lightweight first) remaining_costs = [ (server, self.server_capabilities[server].activation_cost_ms) for server in servers ] remaining_costs.sort(key=lambda x: x[1]) ordered.extend([server for server, _ in remaining_costs]) return ordered ``` **Activation Priorities**: 1. **Serena**: Provides project context for other servers 2. **Context7**: Supplies documentation context early 3. **Remaining**: Sorted by activation cost (lightweight → intensive) ## Performance Estimation ### Activation Cost Calculation ```python def _calculate_activation_cost(self, servers: List[str]) -> int: """Calculate total activation cost in milliseconds.""" return sum( self.server_capabilities[server].activation_cost_ms for server in servers if server in self.server_capabilities ) ``` ### Efficiency Gains Calculation ```python def _calculate_efficiency_gains(self, servers: List[str], operation_data: Dict[str, Any]) -> Dict[str, float]: gains = {} for server in servers: capability = self.server_capabilities[server] # Base efficiency gain base_gain = capability.token_efficiency * capability.quality_impact # Context-specific adjustments if server == 'morphllm' and operation_data.get('file_count', 1) <= 5: gains[server] = base_gain * 1.2 # Extra efficiency for small operations elif server == 'serena' and operation_data.get('complexity_score', 0) > 0.6: gains[server] = base_gain * 1.3 # Extra value for complex operations elif server == 'sequential' and 'debug' in operation_data.get('operation_type', ''): gains[server] = base_gain * 1.4 # Extra value for debugging else: gains[server] = base_gain return gains ``` ## Fallback Strategy Management ### Fallback Mappings ```python def _create_fallback_strategy(self, servers: List[str]) -> Dict[str, str]: """Create fallback strategy for server failures.""" fallback_map = { 'morphllm': 'serena', # Serena can handle editing 'serena': 'morphllm', # Morphllm can handle simple edits 'sequential': 'context7', # Context7 for documentation-based analysis 'context7': 'sequential', # Sequential for complex analysis 'magic': 'morphllm', # Morphllm for component generation 'playwright': 'sequential' # Sequential for test planning } fallbacks = {} for server in servers: fallback = fallback_map.get(server) if fallback and fallback not in servers: fallbacks[server] = fallback else: fallbacks[server] = 'native_tools' # Fall back to native Claude tools return fallbacks ``` ## Coordination Strategy Selection ### Strategy Determination ```python def _determine_coordination_strategy(self, servers: List[str], operation_data: Dict[str, Any]) -> str: if len(servers) <= 1: return 'single_server' # Sequential coordination for complex analysis if 'sequential' in servers and operation_data.get('complexity_score', 0) > 0.6: return 'sequential_lead' # Serena coordination for multi-file operations if 'serena' in servers and operation_data.get('file_count', 1) > 5: return 'serena_lead' # Parallel coordination for independent operations if len(servers) >= 3: return 'parallel_with_sync' return 'collaborative' ``` **Coordination Strategies**: - **single_server**: Single server operation - **sequential_lead**: Sequential server coordinates analysis - **serena_lead**: Serena server coordinates multi-file operations - **parallel_with_sync**: Parallel execution with synchronization points - **collaborative**: Equal collaboration between servers ## Activation Plan Execution ### execute_activation_plan() ```python def execute_activation_plan(self, plan: MCPActivationPlan, context: Dict[str, Any]) -> Dict[str, Any]: start_time = time.time() activated_servers = [] failed_servers = [] fallback_activations = [] for server in plan.activation_order: try: # Check server availability if self.server_states.get(server) == MCPServerState.UNAVAILABLE: failed_servers.append(server) self._handle_server_fallback(server, plan, fallback_activations) continue # Activate server (simulated - real implementation would call MCP) self.server_states[server] = MCPServerState.LOADING activation_start = time.time() # Simulate activation with realistic variance expected_cost = self.server_capabilities[server].activation_cost_ms actual_cost = expected_cost * (0.8 + 0.4 * hash(server) % 1000 / 1000) self.server_states[server] = MCPServerState.AVAILABLE activated_servers.append(server) # Track performance metrics activation_time = (time.time() - activation_start) * 1000 self.performance_metrics[server] = { 'last_activation_ms': activation_time, 'expected_ms': expected_cost, 'efficiency_ratio': expected_cost / max(activation_time, 1) } except Exception as e: failed_servers.append(server) self.server_states[server] = MCPServerState.ERROR self._handle_server_fallback(server, plan, fallback_activations) total_time = (time.time() - start_time) * 1000 return { 'activated_servers': activated_servers, 'failed_servers': failed_servers, 'fallback_activations': fallback_activations, 'total_activation_time_ms': total_time, 'coordination_strategy': plan.coordination_strategy, 'performance_metrics': self.performance_metrics } ``` ## Performance Monitoring and Optimization ### Real-Time Performance Tracking ```python # Track activation performance self.performance_metrics[server] = { 'last_activation_ms': activation_time, 'expected_ms': expected_cost, 'efficiency_ratio': expected_cost / max(activation_time, 1) } # Maintain activation history self.activation_history.append({ 'timestamp': time.time(), 'plan': plan, 'activated': activated_servers, 'failed': failed_servers, 'fallbacks': fallback_activations, 'total_time_ms': total_time }) ``` ### Optimization Recommendations ```python def get_optimization_recommendations(self, context: Dict[str, Any]) -> Dict[str, Any]: recommendations = [] # Analyze recent activation patterns if len(self.activation_history) >= 5: recent_activations = self.activation_history[-5:] # Check for frequently failing servers failed_counts = {} for activation in recent_activations: for failed in activation['failed']: failed_counts[failed] = failed_counts.get(failed, 0) + 1 for server, count in failed_counts.items(): if count >= 3: recommendations.append(f"Server {server} failing frequently - consider fallback strategy") # Check for performance issues avg_times = {} for activation in recent_activations: total_time = activation['total_time_ms'] server_count = len(activation['activated']) if server_count > 0: avg_time_per_server = total_time / server_count avg_times[len(activation['activated'])] = avg_time_per_server if avg_times and max(avg_times.values()) > 500: recommendations.append("Consider reducing concurrent server activations for better performance") return { 'recommendations': recommendations, 'performance_metrics': self.performance_metrics, 'server_states': {k: v.value for k, v in self.server_states.items()}, 'efficiency_score': self._calculate_overall_efficiency() } ``` ## Integration with Hooks ### Hook Usage Pattern ```python # Initialize MCP intelligence mcp_intelligence = MCPIntelligence() # Create activation plan activation_plan = mcp_intelligence.create_activation_plan( user_input="I need to analyze this complex React application and optimize its performance", context={ 'resource_usage_percent': 65, 'user_expertise': 'intermediate', 'project_type': 'web' }, operation_data={ 'file_count': 25, 'complexity_score': 0.7, 'operation_type': 'analyze', 'has_external_dependencies': True } ) # Execute activation plan execution_result = mcp_intelligence.execute_activation_plan(activation_plan, context) # Process results activated_servers = execution_result['activated_servers'] # ['serena', 'context7', 'sequential'] coordination_strategy = execution_result['coordination_strategy'] # 'sequential_lead' total_time = execution_result['total_activation_time_ms'] # 450ms ``` ### Activation Plan Analysis ```python print(f"Servers to activate: {activation_plan.servers_to_activate}") print(f"Activation order: {activation_plan.activation_order}") print(f"Estimated cost: {activation_plan.estimated_cost_ms}ms") print(f"Efficiency gains: {activation_plan.efficiency_gains}") print(f"Fallback strategy: {activation_plan.fallback_strategy}") print(f"Coordination: {activation_plan.coordination_strategy}") ``` ### Performance Optimization ```python # Get optimization recommendations recommendations = mcp_intelligence.get_optimization_recommendations(context) print(f"Recommendations: {recommendations['recommendations']}") print(f"Efficiency score: {recommendations['efficiency_score']}") print(f"Server states: {recommendations['server_states']}") ``` ## Performance Characteristics ### Activation Planning - **Pattern Detection Integration**: <25ms for pattern analysis - **Server Selection Optimization**: <10ms for decision matrix - **Activation Sequencing**: <5ms for ordering calculation - **Cost Estimation**: <3ms for performance prediction ### Execution Performance - **Single Server Activation**: 80-300ms depending on server type - **Multi-Server Coordination**: 200-800ms for parallel activation - **Fallback Handling**: <50ms additional overhead per failure - **Performance Tracking**: <5ms per server for metrics collection ### Memory Efficiency - **Server Capability Cache**: ~2-3KB for all server definitions - **Activation History**: ~500B per activation record - **Performance Metrics**: ~200B per server per activation - **State Tracking**: ~100B per server state ## Error Handling Strategies ### Server Failure Handling ```python def _handle_server_fallback(self, failed_server: str, plan: MCPActivationPlan, fallback_activations: List[str]): """Handle server activation failure with fallback strategy.""" fallback = plan.fallback_strategy.get(failed_server) if fallback and fallback != 'native_tools' and fallback not in plan.servers_to_activate: # Try to activate fallback server if self.server_states.get(fallback) == MCPServerState.AVAILABLE: fallback_activations.append(f"{failed_server}->{fallback}") ``` ### Graceful Degradation - **Server Unavailable**: Use fallback server or native tools - **Activation Timeout**: Mark as failed, attempt fallback - **Performance Issues**: Recommend optimization strategies - **Resource Constraints**: Auto-disable intensive servers ### Recovery Mechanisms - **Automatic Retry**: One retry attempt for transient failures - **State Reset**: Clear error states after successful operations - **History Cleanup**: Remove old activation history to prevent memory issues - **Performance Adjustment**: Adapt expectations based on actual performance ## Configuration Requirements ### MCP Server Configuration ```yaml mcp_server_integration: servers: context7: enabled: true activation_cost_ms: 150 performance_profile: "standard" primary_functions: - "library_docs" - "framework_patterns" - "best_practices" sequential: enabled: true activation_cost_ms: 200 performance_profile: "intensive" primary_functions: - "complex_analysis" - "multi_step_reasoning" - "debugging" ``` ### Orchestrator Configuration ```yaml routing_patterns: complexity_thresholds: serena_threshold: 0.6 morphllm_threshold: 0.6 file_count_threshold: 10 resource_constraints: intensive_disable_threshold: 85 performance_warning_threshold: 75 coordination_strategies: sequential_lead_complexity: 0.6 serena_lead_files: 5 parallel_threshold: 3 ``` ## Usage Examples ### Basic Activation Planning ```python mcp_intelligence = MCPIntelligence() plan = mcp_intelligence.create_activation_plan( user_input="Build a responsive React component with accessibility features", context={'resource_usage_percent': 40, 'user_expertise': 'expert'}, operation_data={'file_count': 3, 'complexity_score': 0.4, 'operation_type': 'build'} ) print(f"Recommended servers: {plan.servers_to_activate}") # ['magic', 'morphllm'] print(f"Activation order: {plan.activation_order}") # ['morphllm', 'magic'] print(f"Coordination: {plan.coordination_strategy}") # 'collaborative' print(f"Estimated cost: {plan.estimated_cost_ms}ms") # 200ms ``` ### Complex Multi-Server Operation ```python plan = mcp_intelligence.create_activation_plan( user_input="Analyze and refactor this large codebase with comprehensive testing", context={'resource_usage_percent': 30, 'is_production': True}, operation_data={ 'file_count': 50, 'complexity_score': 0.8, 'operation_type': 'refactor', 'has_tests': True, 'has_external_dependencies': True } ) print(f"Servers: {plan.servers_to_activate}") # ['serena', 'context7', 'sequential', 'playwright'] print(f"Order: {plan.activation_order}") # ['serena', 'context7', 'sequential', 'playwright'] print(f"Strategy: {plan.coordination_strategy}") # 'serena_lead' print(f"Cost: {plan.estimated_cost_ms}ms") # 750ms ``` ## Dependencies and Relationships ### Internal Dependencies - **pattern_detection**: PatternDetector for intelligent server selection - **yaml_loader**: Configuration loading for server capabilities - **Standard Libraries**: time, typing, dataclasses, enum ### Framework Integration - **ORCHESTRATOR.md**: Intelligent routing and coordination patterns - **Performance Targets**: Sub-200ms activation goals with optimization - **Quality Gates**: Server activation validation and monitoring ### Hook Coordination - Used by all hooks for consistent MCP server management - Provides standardized activation planning and execution - Enables cross-hook performance monitoring and optimization --- *This module serves as the intelligent orchestration layer for MCP server management, ensuring optimal server selection, efficient activation sequences, and robust error handling for all SuperClaude hook operations.*