# Subagent Stop Hook Documentation ## Purpose The `subagent_stop` hook implements **MODE_Task_Management delegation coordination and analytics** by analyzing subagent task completion performance and providing comprehensive delegation effectiveness measurement. This hook specializes in **task delegation analytics and coordination**, measuring multi-agent collaboration effectiveness and optimizing wave orchestration strategies. **Core Responsibilities:** - Analyze subagent task completion and performance metrics - Measure delegation effectiveness and coordination success - Learn from parallel execution patterns and cross-agent coordination - Optimize wave orchestration strategies for multi-agent operations - Coordinate cross-agent knowledge sharing and learning - Track task management framework effectiveness across delegated operations ## Execution Context The `subagent_stop` hook executes **after subagent operations complete** in Claude Code, specifically when: - **Subagent Task Completion**: When individual subagents finish their delegated tasks - **Multi-Agent Coordination End**: After parallel task execution completes - **Wave Orchestration Completion**: When wave-based task coordination finishes - **Delegation Strategy Assessment**: For analyzing effectiveness of different delegation approaches - **Cross-Agent Learning**: When coordination patterns need to be captured for future optimization **Integration Points:** - Integrates with Claude Code's subagent delegation system - Coordinates with MODE_Task_Management for delegation analytics - Synchronizes with wave orchestration for multi-agent coordination - Links with learning engine for continuous delegation improvement ## Performance Target **Target Execution Time: <150ms** The hook maintains strict performance requirements to ensure minimal overhead during delegation analytics: ```python # Performance configuration self.performance_target_ms = config_loader.get_hook_config('subagent_stop', 'performance_target_ms', 150) # Performance tracking execution_time = (time.time() - start_time) * 1000 coordination_report['performance_metrics'] = { 'coordination_analysis_time_ms': execution_time, 'target_met': execution_time < self.performance_target_ms, 'coordination_efficiency': self._calculate_coordination_efficiency(context, execution_time) } ``` **Performance Optimization Features:** - **Fast Context Extraction**: Efficient subagent data parsing and context enrichment - **Streamlined Analytics**: Optimized delegation effectiveness calculations - **Batched Operations**: Grouped analysis operations for efficiency - **Cached Learning**: Reuse of previous coordination patterns for faster analysis ## Delegation Analytics The hook provides comprehensive **delegation effectiveness measurement** through multiple analytical dimensions: ### Task Completion Analysis ```python def _analyze_task_completion(self, context: dict) -> dict: """Analyze task completion performance.""" task_analysis = { 'completion_success': context.get('task_success', False), 'completion_quality': context.get('output_quality', 0.0), 'completion_efficiency': context.get('resource_efficiency', 0.0), 'completion_time_performance': 0.0, 'success_factors': [], 'improvement_areas': [] } ``` **Key Metrics:** - **Completion Success Rate**: Binary success/failure tracking for delegated tasks - **Output Quality Assessment**: Quality scoring (0.0-1.0) based on validation results and error indicators - **Resource Efficiency**: Memory, CPU, and time utilization effectiveness measurement - **Time Performance**: Actual vs. expected execution time analysis - **Success Factor Identification**: Patterns that lead to successful delegation outcomes - **Improvement Area Detection**: Areas requiring optimization in future delegations ### Delegation Effectiveness Measurement ```python def _analyze_delegation_effectiveness(self, context: dict, task_analysis: dict) -> dict: """Analyze effectiveness of task delegation.""" delegation_analysis = { 'delegation_strategy': context.get('delegation_strategy', 'unknown'), 'delegation_success': context.get('task_success', False), 'delegation_efficiency': 0.0, 'coordination_overhead': 0.0, 'parallel_benefit': 0.0, 'delegation_value': 0.0 } ``` **Delegation Strategies Analyzed:** - **Files Strategy**: Individual file-based delegation effectiveness - **Folders Strategy**: Directory-level delegation performance - **Auto Strategy**: Intelligent delegation strategy effectiveness - **Custom Strategies**: User-defined delegation pattern analysis **Effectiveness Dimensions:** - **Delegation Efficiency**: Ratio of productive work to coordination overhead - **Coordination Overhead**: Time and resource cost of agent coordination - **Parallel Benefit**: Actual speedup achieved through parallel execution - **Overall Delegation Value**: Composite score weighing quality, efficiency, and parallel benefits ## Wave Orchestration The hook provides advanced **multi-agent coordination analysis** for wave-based task orchestration: ### Wave Coordination Success ```python def _analyze_coordination_patterns(self, context: dict, delegation_analysis: dict) -> dict: """Analyze coordination patterns and effectiveness.""" coordination_analysis = { 'coordination_strategy': 'unknown', 'synchronization_effectiveness': 0.0, 'data_flow_efficiency': 0.0, 'wave_coordination_success': 0.0, 'cross_agent_learning': 0.0, 'coordination_patterns_detected': [] } ``` **Wave Orchestration Features:** - **Progressive Enhancement**: Iterative improvement through multiple coordination waves - **Systematic Analysis**: Comprehensive methodical analysis across wave cycles - **Adaptive Coordination**: Dynamic strategy adjustment based on wave performance - **Enterprise Orchestration**: Large-scale coordination for complex multi-agent operations ### Wave Performance Metrics ```python def _update_wave_orchestration_metrics(self, context: dict, coordination_analysis: dict) -> dict: """Update wave orchestration performance metrics.""" wave_metrics = { 'wave_performance': 0.0, 'orchestration_efficiency': 0.0, 'wave_learning_value': 0.0, 'next_wave_recommendations': [] } ``` **Wave Strategy Analysis:** - **Wave Position Tracking**: Current position within multi-wave coordination - **Inter-Wave Communication**: Data flow and synchronization between waves - **Wave Success Metrics**: Performance measurement across wave cycles - **Orchestration Efficiency**: Resource utilization effectiveness in wave coordination ## Cross-Agent Learning The hook implements **sophisticated learning mechanisms** for continuous delegation improvement: ### Learning Event Recording ```python def _record_coordination_learning(self, context: dict, delegation_analysis: dict, optimization_insights: dict): """Record coordination learning for future optimization.""" # Record delegation effectiveness self.learning_engine.record_learning_event( LearningType.PERFORMANCE_OPTIMIZATION, AdaptationScope.PROJECT, context, { 'delegation_strategy': context.get('delegation_strategy'), 'task_type': context.get('task_type'), 'delegation_value': delegation_analysis['delegation_value'], 'coordination_overhead': delegation_analysis['coordination_overhead'], 'parallel_benefit': delegation_analysis['parallel_benefit'] }, delegation_analysis['delegation_value'], 0.8, {'hook': 'subagent_stop', 'coordination_learning': True} ) ``` **Learning Categories:** - **Performance Optimization**: Delegation strategy effectiveness patterns - **Operation Patterns**: Successful task completion patterns - **Coordination Patterns**: Effective multi-agent coordination strategies - **Error Recovery**: Learning from delegation failures and recovery strategies **Learning Scopes:** - **Project-Level Learning**: Delegation patterns specific to current project - **User-Level Learning**: Cross-project delegation preferences and patterns - **System-Level Learning**: Framework-wide coordination optimization patterns ## Parallel Execution Tracking The hook provides comprehensive **parallel operation performance analysis**: ### Parallel Benefit Calculation ```python # Calculate parallel benefit parallel_tasks = context.get('parallel_tasks', []) if len(parallel_tasks) > 1: # Estimate parallel benefit based on task coordination parallel_efficiency = context.get('parallel_efficiency', 1.0) theoretical_speedup = len(parallel_tasks) actual_speedup = theoretical_speedup * parallel_efficiency delegation_analysis['parallel_benefit'] = actual_speedup / theoretical_speedup ``` **Parallel Performance Metrics:** - **Theoretical vs. Actual Speedup**: Comparison of expected and achieved parallel performance - **Parallel Efficiency**: Effectiveness of parallel task coordination - **Synchronization Overhead**: Cost of coordinating parallel operations - **Resource Contention Analysis**: Impact of resource sharing on parallel performance ### Coordination Pattern Detection ```python # Detect coordination patterns if delegation_analysis['delegation_value'] > 0.8: coordination_analysis['coordination_patterns_detected'].append('effective_delegation') if coordination_analysis['synchronization_effectiveness'] > 0.8: coordination_analysis['coordination_patterns_detected'].append('efficient_synchronization') if coordination_analysis['wave_coordination_success'] > 0.8: coordination_analysis['coordination_patterns_detected'].append('successful_wave_orchestration') ``` **Pattern Categories:** - **Effective Delegation**: High-value delegation strategies - **Efficient Synchronization**: Optimal coordination mechanisms - **Successful Wave Orchestration**: High-performing wave coordination patterns - **Resource Optimization**: Efficient resource utilization patterns ## Configuration The hook is configured through `superclaude-config.json` with comprehensive settings for delegation analytics: ### Core Configuration ```json { "hooks": { "subagent_stop": { "enabled": true, "priority": 7, "performance_target_ms": 150, "delegation_analytics": { "enabled": true, "strategy_analysis": ["files", "folders", "auto"], "effectiveness_threshold": 0.6, "coordination_overhead_threshold": 0.3 }, "wave_orchestration": { "enabled": true, "wave_strategies": ["progressive", "systematic", "adaptive", "enterprise"], "success_threshold": 0.7, "learning_enabled": true }, "parallel_tracking": { "efficiency_threshold": 0.7, "synchronization_tracking": true, "resource_contention_analysis": true }, "learning_configuration": { "coordination_learning": true, "pattern_detection": true, "cross_agent_learning": true, "performance_learning": true } } } } ``` ### Task Management Configuration ```json { "session": { "task_management": { "delegation_strategies": ["files", "folders", "auto"], "wave_orchestration": { "enabled": true, "strategies": ["progressive", "systematic", "adaptive", "enterprise"], "complexity_threshold": 0.4, "min_wave_tasks": 3 }, "parallel_coordination": { "max_parallel_agents": 7, "synchronization_timeout_ms": 5000, "resource_sharing_enabled": true }, "learning_integration": { "delegation_learning": true, "wave_learning": true, "cross_session_learning": true } } } } ``` ## MODE_Task_Management Integration The hook implements **MODE_Task_Management** through comprehensive integration with the task management framework: ### Task Management Layer Integration ```python # Load task management configuration self.task_config = config_loader.get_section('session', 'task_management', {}) # Integration with task management layers # Layer 1: TodoRead/TodoWrite (Session Tasks) - Real-time state management # Layer 2: /task Command (Project Management) - Cross-session persistence # Layer 3: /spawn Command (Meta-Orchestration) - Complex multi-domain operations # Layer 4: /loop Command (Iterative Enhancement) - Progressive refinement workflows ``` **Framework Integration Points:** - **Session Task Tracking**: Integration with TodoWrite for task completion analytics - **Project Task Coordination**: Cross-session task management integration - **Meta-Orchestration**: Complex multi-domain operation coordination - **Iterative Enhancement**: Progressive refinement and quality improvement cycles ### Auto-Activation Patterns The hook supports MODE_Task_Management auto-activation patterns: ```python # Auto-activation triggers from MODE_Task_Management: # - Sub-Agent Delegation: >2 directories OR >3 files OR complexity >0.4 # - Wave Mode: complexity ≥0.4 AND files >3 AND operation_types >2 # - Loop Mode: polish, refine, enhance, improve keywords detected ``` **Detection Patterns:** - **Multi-Step Operations**: 3+ step sequences with dependency analysis - **Complexity Thresholds**: Operations exceeding 0.4 complexity score - **File Count Triggers**: 3+ files for delegation, 2+ directories for coordination - **Performance Opportunities**: Auto-detect parallelizable operations with time estimates ## Coordination Effectiveness The hook provides comprehensive **success metrics for delegation** through multiple measurement dimensions: ### Overall Effectiveness Calculation ```python 'performance_summary': { 'overall_effectiveness': ( task_analysis['completion_quality'] * 0.4 + delegation_analysis['delegation_value'] * 0.3 + coordination_analysis['synchronization_effectiveness'] * 0.3 ), 'delegation_success': delegation_analysis['delegation_value'] > 0.6, 'coordination_success': coordination_analysis['synchronization_effectiveness'] > 0.7, 'learning_value': wave_metrics.get('wave_learning_value', 0.5) } ``` **Effectiveness Dimensions:** - **Task Quality (40%)**: Output quality and completion success - **Delegation Value (30%)**: Effectiveness of delegation strategy and execution - **Coordination Success (30%)**: Synchronization and coordination effectiveness ### Success Thresholds ```python # Success criteria delegation_success = delegation_analysis['delegation_value'] > 0.6 coordination_success = coordination_analysis['synchronization_effectiveness'] > 0.7 wave_success = wave_metrics['wave_performance'] > 0.8 ``` **Performance Benchmarks:** - **Delegation Success**: >60% delegation value threshold - **Coordination Success**: >70% synchronization effectiveness threshold - **Wave Success**: >80% wave performance threshold - **Overall Effectiveness**: Composite score incorporating all dimensions ### Optimization Recommendations ```python def _generate_optimization_insights(self, context: dict, task_analysis: dict, delegation_analysis: dict, coordination_analysis: dict) -> dict: """Generate optimization insights for future delegations.""" insights = { 'delegation_optimizations': [], 'coordination_improvements': [], 'wave_strategy_recommendations': [], 'performance_enhancements': [], 'learning_opportunities': [] } ``` **Recommendation Categories:** - **Delegation Optimizations**: Alternative strategies, overhead reduction, task partitioning improvements - **Coordination Improvements**: Synchronization mechanism optimization, data exchange pattern improvements - **Wave Strategy Recommendations**: Orchestration strategy adjustments, task distribution optimization - **Performance Enhancements**: Execution speed optimization, resource utilization improvements - **Learning Opportunities**: Pattern recognition, cross-agent learning, continuous improvement areas ## Error Handling and Resilience The hook implements robust error handling with graceful degradation: ```python def _create_fallback_report(self, subagent_data: dict, error: str) -> dict: """Create fallback coordination report on error.""" return { 'subagent_id': subagent_data.get('subagent_id', 'unknown'), 'task_id': subagent_data.get('task_id', 'unknown'), 'completion_timestamp': time.time(), 'error': error, 'fallback_mode': True, 'task_completion': { 'success': False, 'quality_score': 0.0, 'efficiency_score': 0.0, 'error_occurred': True } } ``` **Error Recovery Strategies:** - **Graceful Degradation**: Fallback coordination reports when analysis fails - **Context Preservation**: Maintain essential coordination data even during errors - **Error Logging**: Comprehensive error tracking for debugging and improvement - **Performance Monitoring**: Continue performance tracking even in error conditions ## Integration with SuperClaude Framework The hook integrates seamlessly with the broader SuperClaude framework: ### Framework Components - **Learning Engine Integration**: Records coordination patterns for continuous improvement - **Pattern Detection**: Identifies successful delegation and coordination patterns - **MCP Intelligence**: Coordinates with MCP servers for enhanced analysis - **Compression Engine**: Optimizes data storage and transfer for coordination analytics - **Framework Logic**: Implements SuperClaude operational principles and patterns ### Quality Gates Integration The hook contributes to SuperClaude's 8-step quality validation cycle: - **Step 2.5**: Task management validation during orchestration operations - **Step 7.5**: Session completion verification and summary documentation - **Continuous**: Real-time metrics collection and performance monitoring - **Post-Session**: Comprehensive session analytics and completion reporting ### Future Enhancements Planned improvements for enhanced delegation coordination: - **Predictive Delegation**: ML-based delegation strategy recommendation - **Cross-Project Learning**: Delegation pattern sharing across projects - **Real-Time Optimization**: Dynamic delegation adjustment during execution - **Advanced Wave Strategies**: More sophisticated wave orchestration patterns - **Resource Prediction**: Predictive resource allocation for delegated tasks