# Stop Hook Documentation ## Overview The Stop Hook is a comprehensive session analytics and persistence engine that runs at the end of each Claude Code session. It implements the `/sc:save` logic with advanced performance tracking, providing detailed analytics about session effectiveness, learning consolidation, and intelligent session data storage. ## Purpose The Stop Hook serves as the primary session analytics and persistence system for SuperClaude Framework, delivering: - **Session Analytics**: Comprehensive performance and effectiveness metrics - **Learning Consolidation**: Consolidation of learning events from the entire session - **Session Persistence**: Intelligent session data storage with compression - **Performance Optimization**: Recommendations for future sessions based on analytics - **Quality Assessment**: Session success evaluation and improvement suggestions - **Framework Effectiveness**: Measurement of SuperClaude framework impact ## Execution Context ### When This Hook Runs - **Trigger**: Session termination in Claude Code - **Context**: End of user session, before final cleanup - **Data Available**: Complete session history, operations log, error records - **Timing**: After all user operations completed, before session cleanup ### Hook Integration Points - **Session Lifecycle**: Final stage of session processing - **MCP Intelligence**: Coordinates with MCP servers for enhanced analytics - **Learning Engine**: Consolidates learning events and adaptations - **Framework Logic**: Applies SuperClaude framework patterns for analysis ## Performance Target **Primary Target**: <200ms execution time for complete session analytics ### Performance Benchmarks - **Initialization**: <50ms for component loading - **Analytics Generation**: <100ms for comprehensive analysis - **Session Persistence**: <30ms for data storage - **Learning Consolidation**: <20ms for learning events processing - **Total Processing**: <200ms end-to-end execution ### Performance Monitoring ```python execution_time = (time.time() - start_time) * 1000 target_met = execution_time < self.performance_target_ms ``` ## Session Analytics ### Comprehensive Performance Metrics #### Overall Score Calculation ```python overall_score = ( productivity * 0.4 + effectiveness * 0.4 + (1.0 - error_rate) * 0.2 ) ``` #### Performance Categories - **Productivity Score**: Operations per minute, completion rates - **Quality Score**: Error rates, operation success rates - **Intelligence Utilization**: MCP server usage, SuperClaude effectiveness - **Resource Efficiency**: Memory, CPU, token usage optimization - **User Satisfaction Estimate**: Derived from session patterns and outcomes #### Analytics Components ```yaml performance_metrics: overall_score: 0.85 # Combined performance indicator productivity_score: 0.78 # Operations efficiency quality_score: 0.92 # Error-free execution rate efficiency_score: 0.84 # Resource utilization satisfaction_estimate: 0.87 # Estimated user satisfaction ``` ### Bottleneck Identification - **High Error Rate**: >20% operation failure rate - **Low Productivity**: <50% productivity score - **Underutilized Intelligence**: <30% MCP usage with SuperClaude enabled - **Resource Constraints**: Memory/CPU/token usage optimization opportunities ### Optimization Opportunities Detection - **Tool Usage Optimization**: >10 unique tools suggest coordination improvement - **MCP Server Coordination**: <2 servers with >5 operations suggest better orchestration - **Workflow Enhancement**: Pattern analysis for efficiency improvements ## Learning Consolidation ### Learning Events Processing The hook consolidates all learning events generated during the session: ```python def _consolidate_learning_events(self, context: dict) -> dict: # Generate learning insights from session insights = self.learning_engine.generate_learning_insights() # Session-specific learning metrics session_learning = { 'session_effectiveness': context.get('superclaude_effectiveness', 0), 'performance_score': context.get('session_productivity', 0), 'mcp_coordination_effectiveness': min(context.get('mcp_usage_ratio', 0) * 2, 1.0), 'error_recovery_success': 1.0 - context.get('error_rate', 0) } ``` ### Learning Categories - **Effectiveness Feedback**: Session performance patterns - **User Preferences**: Interaction and usage patterns - **Technical Patterns**: Tool usage and coordination effectiveness - **Error Recovery**: Success patterns for error handling ### Adaptation Creation - **Session-Level Adaptations**: Immediate session pattern learning - **User-Level Adaptations**: Long-term preference learning - **Technical Adaptations**: Tool and workflow optimization patterns ## Session Persistence ### Intelligent Storage Strategy #### Data Classification - **Session Analytics**: Complete performance and effectiveness data - **Learning Events**: Consolidated learning insights and adaptations - **Context Data**: Session operational context and metadata - **Recommendations**: Generated suggestions for future sessions #### Compression Logic ```python # Apply compression for large session data if len(analytics_data) > 10000: # 10KB threshold compression_result = self.compression_engine.compress_content( analytics_data, context, {'content_type': 'session_data'} ) ``` #### Storage Optimization - **Session Cleanup**: Maintains 50 most recent sessions - **Automatic Pruning**: Removes sessions older than retention policy - **Compression**: Applied to sessions >10KB for storage efficiency ### Persistence Results ```yaml persistence_result: persistence_enabled: true session_data_saved: true analytics_saved: true learning_data_saved: true compression_applied: true compression_ratio: 0.65 storage_optimized: true ``` ## Recommendations Generation ### Performance Improvements Generated when overall score <70%: - Focus on reducing error rate through validation - Enable more SuperClaude intelligence features - Optimize tool selection and usage patterns ### SuperClaude Optimizations Based on framework effectiveness analysis: - **Low Effectiveness (<60%)**: Enable more MCP servers, use delegation features - **Disabled Framework**: Recommend SuperClaude enablement for productivity - **Underutilization**: Activate compression and intelligence features ### Learning Suggestions - **Low Learning Events (<3)**: Engage with more complex operations - **Pattern Recognition**: Suggestions based on successful session patterns - **Workflow Enhancement**: Recommendations for process improvements ### Workflow Enhancements Based on error patterns and efficiency analysis: - **High Error Rate (>10%)**: Use validation hooks, enable pre-tool intelligence - **Resource Optimization**: Memory, CPU, token usage improvements - **Coordination Enhancement**: Better MCP server and tool coordination ## Configuration ### Hook Configuration Loaded from `superclaude-config.json` hook configuration: ```yaml stop_hook: performance_target_ms: 200 analytics: comprehensive_metrics: true learning_consolidation: true recommendation_generation: true persistence: enabled: true compression_threshold_bytes: 10000 session_retention_count: 50 learning: session_adaptations: true user_preference_tracking: true technical_pattern_learning: true ``` ### Session Configuration Falls back to session.yaml configuration when available: ```yaml session: analytics_enabled: true learning_consolidation: true performance_tracking: true recommendation_generation: true persistence_optimization: true ``` ## Integration with /sc:save ### Command Implementation The Stop Hook directly implements the `/sc:save` command logic: #### Core /sc:save Features - **Session Analytics**: Complete session performance analysis - **Learning Consolidation**: All learning events processed and stored - **Intelligent Persistence**: Session data saved with optimization - **Recommendation Generation**: Actionable suggestions for improvement - **Performance Tracking**: <200ms execution time monitoring #### /sc:save Workflow Integration ```python def process_session_stop(self, session_data: dict) -> dict: # 1. Extract session context context = self._extract_session_context(session_data) # 2. Analyze session performance (/sc:save analytics) performance_analysis = self._analyze_session_performance(context) # 3. Consolidate learning events (/sc:save learning) learning_consolidation = self._consolidate_learning_events(context) # 4. Generate session analytics (/sc:save metrics) session_analytics = self._generate_session_analytics(...) # 5. Perform session persistence (/sc:save storage) persistence_result = self._perform_session_persistence(...) # 6. Generate recommendations (/sc:save recommendations) recommendations = self._generate_recommendations(...) ``` ### /sc:save Output Format ```yaml session_report: session_id: "session_2025-01-31_14-30-00" session_completed: true completion_timestamp: 1704110400 analytics: session_summary: {...} performance_metrics: {...} superclaude_effectiveness: {...} quality_analysis: {...} learning_summary: {...} persistence: persistence_enabled: true analytics_saved: true compression_applied: true recommendations: performance_improvements: [...] superclaude_optimizations: [...] learning_suggestions: [...] workflow_enhancements: [...] ``` ## Quality Assessment ### Session Success Criteria A session is considered successful when: - **Overall Score**: >60% performance score - **SuperClaude Effectiveness**: >60% when framework enabled - **Learning Achievement**: >0 insights generated - **Recommendations**: Actionable suggestions provided ### Quality Metrics ```yaml quality_analysis: error_rate: 0.05 # 5% error rate operation_success_rate: 0.95 # 95% success rate bottlenecks: ["low_productivity"] # Identified issues optimization_opportunities: [...] # Improvement areas ``` ### Success Indicators - **Session Success**: `overall_score > 0.6` - **SuperClaude Effective**: `effectiveness_score > 0.6` - **Learning Achieved**: `insights_generated > 0` - **Recommendations Generated**: `total_recommendations > 0` ### User Satisfaction Estimation ```python def _estimate_user_satisfaction(self, context: dict) -> float: satisfaction_factors = [] # Error rate impact satisfaction_factors.append(1.0 - error_rate) # Productivity impact satisfaction_factors.append(productivity) # SuperClaude effectiveness impact if superclaude_enabled: satisfaction_factors.append(effectiveness) # Session duration optimization (15-60 minutes optimal) satisfaction_factors.append(duration_satisfaction) return statistics.mean(satisfaction_factors) ``` ## Error Handling ### Graceful Degradation When errors occur during hook execution: ```python except Exception as e: log_error("stop", str(e), {"session_data": session_data}) return self._create_fallback_report(session_data, str(e)) ``` ### Fallback Reporting ```yaml fallback_report: session_completed: false error: "Analysis engine failure" fallback_mode: true analytics: performance_metrics: overall_score: 0.0 persistence: persistence_enabled: false ``` ### Recovery Strategies - **Analytics Failure**: Provide basic session summary - **Persistence Failure**: Continue with recommendations generation - **Learning Engine Error**: Skip learning consolidation, continue with core analytics - **Complete Failure**: Return minimal session completion report ## Performance Optimization ### Efficiency Strategies - **Lazy Loading**: Components initialized only when needed - **Batch Processing**: Multiple analytics operations combined - **Compression**: Large session data automatically compressed - **Caching**: Learning insights cached for reuse ### Resource Management - **Memory Optimization**: Session cleanup after processing - **Storage Efficiency**: Old sessions automatically pruned - **Processing Time**: <200ms target with continuous monitoring - **Token Efficiency**: Compressed analytics data when appropriate ## Future Enhancements ### Planned Features - **Cross-Session Analytics**: Performance trends across multiple sessions - **Predictive Recommendations**: ML-based optimization suggestions - **Real-Time Monitoring**: Live session analytics during execution - **Collaborative Learning**: Shared learning patterns across users - **Advanced Compression**: Context-aware compression algorithms ### Integration Opportunities - **Dashboard Integration**: Real-time analytics visualization - **Notification System**: Alerts for performance degradation - **API Endpoints**: Session analytics via REST API - **Export Capabilities**: Analytics data export for external analysis --- *The Stop Hook represents the culmination of session management in SuperClaude Framework, providing comprehensive analytics, learning consolidation, and intelligent persistence to enable continuous improvement and optimization of user productivity.*