# Framework-Hooks System Overview ## System Architecture The Framework-Hooks system is a pattern-driven intelligence layer that enhances Claude Code's capabilities through lifecycle hooks and shared components. The system operates on a modular architecture consisting of: ### Core Components 1. **Lifecycle Hooks** - 7 Python modules that run at specific points in Claude Code execution 2. **Shared Intelligence Modules** - Common functionality providing pattern detection, learning, and framework logic 3. **YAML Configuration System** - Dynamic, hot-reloadable configuration files 4. **Performance Monitoring** - Real-time tracking with sub-50ms bootstrap targets 5. **Adaptive Learning Engine** - Continuous improvement through pattern recognition and user adaptation ### Architecture Layers ``` ┌─────────────────────────────────────────┐ │ Claude Code Interface │ ├─────────────────────────────────────────┤ │ Lifecycle Hooks │ │ ┌─────┬─────┬─────┬─────┬─────┬─────┐ │ │ │Start│Pre │Post │Pre │Notif│Stop │ │ │ │ │Tool │Tool │Comp │ │ │ │ │ └─────┴─────┴─────┴─────┴─────┴─────┘ │ ├─────────────────────────────────────────┤ │ Shared Intelligence │ │ ┌────────────┬─────────────┬─────────┐ │ │ │ Framework │ Pattern │Learning │ │ │ │ Logic │ Detection │Engine │ │ │ └────────────┴─────────────┴─────────┘ │ ├─────────────────────────────────────────┤ │ YAML Configuration │ │ ┌─────────────┬────────────┬─────────┐ │ │ │Performance │Modes │Logging │ │ │ │Targets │Config │Config │ │ │ └─────────────┴────────────┴─────────┘ │ └─────────────────────────────────────────┘ ``` ## Purpose The Framework-Hooks system solves critical performance and intelligence challenges in AI-assisted development: ### Primary Problems Solved 1. **Context Bloat** - Reduces context usage through pattern-driven intelligence instead of loading complete documentation 2. **Bootstrap Performance** - Achieves <50ms session initialization through intelligent caching and selective loading 3. **Decision Intelligence** - Provides context-aware routing and MCP server selection based on operation patterns 4. **Adaptive Learning** - Continuously improves performance through user preference learning and pattern recognition 5. **Resource Optimization** - Manages memory, CPU, and token usage through real-time monitoring and adaptive compression ### System Benefits - **Performance**: Sub-50ms bootstrap times with intelligent caching - **Intelligence**: Pattern-driven decision making without documentation overhead - **Adaptability**: Learns user preferences and project patterns over time - **Scalability**: Handles complex multi-domain operations through coordination - **Reliability**: Graceful degradation with fallback strategies ## Pattern-Driven Intelligence The system differs fundamentally from traditional documentation-driven approaches: ### Traditional Approach ``` Session Start → Load 50KB+ Documentation → Parse → Apply Rules → Execute ``` **Problems**: High latency, memory usage, context bloat ### Pattern-Driven Approach ``` User Request → Pattern Detection → Cached Intelligence → Smart Routing → Execute ``` **Benefits**: Context reduction, <50ms response, adaptive learning ### Intelligence Components 1. **Pattern Detection Engine** - Analyzes user input for operation intent - Detects complexity indicators and scope - Identifies framework patterns and project types - Determines optimal routing strategies 2. **Learning Engine** - Records user preferences and successful patterns - Adapts recommendations based on effectiveness - Maintains project-specific optimizations - Provides cross-session learning continuity 3. **MCP Intelligence Router** - Selects optimal MCP servers based on context - Coordinates multi-server operations - Implements fallback strategies - Optimizes activation order and resource usage 4. **Framework Logic Engine** - Applies SuperClaude principles (RULES.md, PRINCIPLES.md) - Determines quality gates and validation levels - Calculates complexity scores and risk assessments - Provides evidence-based decision making ## Performance Optimization The system achieves exceptional performance through multiple optimization strategies: ### Bootstrap Optimization (<50ms target) 1. **Selective Loading** - Only loads patterns relevant to current operation - Caches frequently used intelligence - Defers non-critical initialization 2. **Intelligent Caching** - Pattern results cached with smart invalidation - Learning data compressed and indexed - MCP server configurations pre-computed 3. **Parallel Processing** - Hook execution parallelized where possible - Background learning processing - Asynchronous pattern updates ### Runtime Performance Targets | Component | Target | Critical Threshold | |---------------|--------|--------------------| | Session Start | <50ms | 100ms | | Tool Routing | <200ms | 500ms | | Validation | <100ms | 250ms | | Compression | <150ms | 300ms | | Notification | <100ms | 200ms | ### Memory Optimization - **Pattern Data**: 5KB typical (vs 50KB+ documentation) - **Learning Cache**: Compressed storage with 30% efficiency - **Session Data**: Smart cleanup with 70% hit ratio - **Total Footprint**: <100MB target, 200MB critical ## Directory Structure ``` Framework-Hooks/ ├── hooks/ # Lifecycle hook implementations │ ├── session_start.py # Session initialization & intelligence routing │ ├── pre_tool_use.py # MCP server selection & optimization │ ├── post_tool_use.py # Validation & learning integration │ ├── pre_compact.py # Token efficiency & compression │ ├── notification.py # Just-in-time pattern updates │ ├── stop.py # Session analytics & persistence │ ├── subagent_stop.py # Task management coordination │ └── shared/ # Shared intelligence modules │ ├── framework_logic.py # SuperClaude principles implementation │ ├── pattern_detection.py # Pattern recognition engine │ ├── mcp_intelligence.py # MCP server routing logic │ ├── learning_engine.py # Adaptive learning system │ ├── compression_engine.py # Token optimization algorithms │ ├── yaml_loader.py # Configuration management │ └── logger.py # Performance & debug logging ├── config/ # YAML configuration files │ ├── performance.yaml # Performance targets & thresholds │ ├── modes.yaml # Mode activation patterns │ ├── orchestrator.yaml # Routing & coordination rules │ ├── session.yaml # Session management settings │ ├── logging.yaml # Logging configuration │ ├── validation.yaml # Quality gate definitions │ └── compression.yaml # Token efficiency settings ├── patterns/ # Learning & pattern storage │ ├── dynamic/ # Runtime pattern detection │ ├── learned/ # User preference patterns │ └── minimal/ # Project-specific optimizations ├── cache/ # Performance caching │ └── learning_records.json # Adaptive learning data ├── docs/ # System documentation └── superclaude-config.json # Master configuration ``` ## Key Components ### 1. Session Start Hook (`session_start.py`) **Purpose**: Intelligent session bootstrap with <50ms performance target **Responsibilities**: - Project context detection and loading - Automatic mode activation based on user input patterns - MCP server intelligence routing - User preference application from learning engine - Performance-optimized initialization **Key Features**: - Pattern-based project type detection (Node.js, Python, Rust, Go) - Brainstorming mode auto-activation for ambiguous requests - Framework exclusion to prevent context bloat - Learning-driven user preference adaptation ### 2. Pre-Tool Use Hook (`pre_tool_use.py`) **Purpose**: Intelligent tool routing and MCP server selection **Responsibilities**: - MCP server activation planning based on operation type - Performance optimization through parallel coordination - Context-aware tool selection - Fallback strategy implementation **Key Features**: - Pattern-based MCP server selection - Real-time performance monitoring - Intelligent caching of routing decisions - Cross-server coordination strategies ### 3. Post-Tool Use Hook (`post_tool_use.py`) **Purpose**: Quality validation and learning integration **Responsibilities**: - RULES.md and PRINCIPLES.md compliance validation - Effectiveness measurement and learning - Error pattern detection - Quality score calculation **Key Features**: - 8-step quality gate validation - Learning opportunity identification - Performance effectiveness tracking - Adaptive improvement suggestions ### 4. Pre-Compact Hook (`pre_compact.py`) **Purpose**: Token efficiency through intelligent compression **Responsibilities**: - Selective content compression (framework exclusion) - Symbol systems and abbreviation application - Quality-gated compression with >95% preservation - Adaptive compression level selection **Key Features**: - 5-level compression strategy (minimal to emergency) - Framework content protection (0% compression) - Real-time quality preservation monitoring - Context-aware compression selection ### 5. Notification Hook (`notification.py`) **Purpose**: Just-in-time pattern updates and intelligence caching **Responsibilities**: - Dynamic pattern loading based on operation context - Framework intelligence updates - Performance optimization through selective caching - Real-time learning integration **Key Features**: - Context-sensitive documentation loading - Intelligent cache management with 30-60 minute TTL - Pattern update coordination - Learning-driven optimization ### 6. Stop Hook (`stop.py`) **Purpose**: Session analytics and learning consolidation **Responsibilities**: - Comprehensive session performance analytics - Learning consolidation and persistence - Session quality assessment - Optimization recommendations generation **Key Features**: - End-to-end performance measurement - Learning effectiveness tracking - Session summary generation - Quality improvement suggestions ### 7. Sub-Agent Stop Hook (`subagent_stop.py`) **Purpose**: Task management delegation coordination **Responsibilities**: - Sub-agent performance analytics - Delegation effectiveness measurement - Wave orchestration optimization - Parallel execution performance tracking **Key Features**: - Multi-agent coordination analytics - Delegation strategy optimization - Performance gain measurement - Resource utilization tracking ## Integration with SuperClaude The Framework-Hooks system enhances Claude Code capabilities through deep integration with SuperClaude framework components: ### Mode Integration 1. **Brainstorming Mode** - Auto-activation through session_start pattern detection - Interactive requirements discovery - Brief generation and PRD handoff 2. **Task Management Mode** - Wave orchestration through delegation patterns - Multi-layer task coordination (TodoWrite → /task → /spawn → /loop) - Performance analytics and optimization 3. **Token Efficiency Mode** - Selective compression with framework protection - Symbol systems and abbreviation optimization - Quality-gated compression with preservation targets 4. **Introspection Mode** - Meta-cognitive analysis integration - Framework compliance validation - Pattern recognition and learning ### MCP Server Coordination - **Context7**: Library documentation and framework patterns - **Sequential**: Multi-step reasoning and complex analysis - **Magic**: UI component generation and design systems - **Playwright**: Browser automation and testing - **Morphllm**: Intelligent editing with pattern application - **Serena**: Semantic analysis and memory management ### Quality Gates Integration The system implements the SuperClaude 8-step quality validation: 1. **Syntax Validation** - Language-specific correctness 2. **Type Analysis** - Type compatibility and inference 3. **Code Quality** - Linting rules and standards 4. **Security Assessment** - Vulnerability and threat analysis 5. **Testing Validation** - Test coverage and quality 6. **Performance Analysis** - Optimization and benchmarking 7. **Documentation** - Completeness and accuracy 8. **Integration Testing** - End-to-end validation ### Performance Benefits - **90% Context Reduction**: 50KB+ → 5KB through pattern-driven intelligence - **<50ms Bootstrap**: Intelligent caching and selective loading - **40-70% Time Savings**: Through delegation and parallel processing - **30-50% Token Efficiency**: Smart compression with quality preservation - **Adaptive Learning**: Continuous improvement through usage patterns The Framework-Hooks system transforms Claude Code from a reactive tool into an intelligent, adaptive development partner that learns user preferences, optimizes performance, and provides context-aware assistance while maintaining the reliability and quality standards of the SuperClaude framework.