# Session Configuration (`session.yaml`) ## Overview The `session.yaml` file defines session lifecycle management and analytics configuration for the SuperClaude-Lite framework. This configuration controls session initialization, termination, project detection, intelligence activation, and comprehensive session analytics across the framework. ## Purpose and Role The session configuration serves as: - **Session Lifecycle Manager**: Controls initialization and termination patterns for optimal user experience - **Project Intelligence Engine**: Automatically detects project types and activates appropriate framework features - **Mode Activation Coordinator**: Manages intelligent activation of behavioral modes based on context - **Analytics and Learning System**: Tracks session effectiveness and enables continuous framework improvement - **Performance Optimizer**: Manages session-level performance targets and resource utilization ## Configuration Structure ### 1. Session Lifecycle Configuration (`session_lifecycle`) #### Initialization Settings ```yaml initialization: performance_target_ms: 50 auto_project_detection: true context_loading_strategy: "selective" framework_exclusion_enabled: true default_modes: - "adaptive_intelligence" - "performance_monitoring" intelligence_activation: pattern_detection: true mcp_routing: true learning_integration: true compression_optimization: true ``` **Performance Target**: 50ms initialization for immediate user engagement **Selective Loading**: Loads only necessary context for fast startup **Framework Exclusion**: Protects framework content from modification **Default Modes**: Activates adaptive intelligence and performance monitoring by default #### Termination Settings ```yaml termination: performance_target_ms: 200 analytics_generation: true learning_consolidation: true session_persistence: true cleanup_optimization: true ``` **Analytics Generation**: Creates comprehensive session analytics on termination **Learning Consolidation**: Consolidates session learnings for future improvement **Session Persistence**: Saves session state for potential recovery **Cleanup Optimization**: Optimizes resource cleanup for performance ### 2. Project Type Detection (`project_detection`) #### File Indicators ```yaml file_indicators: nodejs: - "package.json" - "node_modules/" - "yarn.lock" - "pnpm-lock.yaml" python: - "pyproject.toml" - "setup.py" - "requirements.txt" - "__pycache__/" - ".py" rust: - "Cargo.toml" - "Cargo.lock" - "src/main.rs" - "src/lib.rs" go: - "go.mod" - "go.sum" - "main.go" web_frontend: - "index.html" - "public/" - "dist/" - "build/" - "src/components/" ``` **Purpose**: Automatically detects project type based on characteristic files **Multi-Language Support**: Supports major programming languages and frameworks **Progressive Detection**: Multiple indicators increase detection confidence #### Framework Detection ```yaml framework_detection: react: - "react" - "next.js" - "@types/react" vue: - "vue" - "nuxt" - "@vue/cli" angular: - "@angular/core" - "angular.json" express: - "express" - "app.js" - "server.js" ``` **Framework Intelligence**: Detects specific frameworks within project types **Package Analysis**: Analyzes package.json and similar files for framework indicators **Enhanced Context**: Framework detection enables specialized optimizations ### 3. Intelligence Activation Rules (`intelligence_activation`) #### Mode Detection Patterns ```yaml mode_detection: brainstorming: triggers: - "new project" - "not sure" - "thinking about" - "explore" - "brainstorm" confidence_threshold: 0.7 auto_activate: true task_management: triggers: - "multiple files" - "complex operation" - "system-wide" - "comprehensive" file_count_threshold: 3 complexity_threshold: 0.4 auto_activate: true token_efficiency: triggers: - "resource constraint" - "brevity" - "compressed" - "efficient" resource_threshold_percent: 75 conversation_length_threshold: 100 auto_activate: true ``` **Automatic Mode Activation**: Intelligent detection and activation based on user patterns **Confidence Thresholds**: Ensures accurate mode selection **Context-Aware**: Considers project characteristics and resource constraints #### MCP Server Activation ```yaml mcp_server_activation: context7: triggers: - "library" - "documentation" - "framework" - "api reference" project_indicators: - "external_dependencies" - "framework_detected" auto_activate: true sequential: triggers: - "analyze" - "debug" - "complex" - "systematic" complexity_threshold: 0.6 auto_activate: true magic: triggers: - "component" - "ui" - "frontend" - "design" project_type_match: ["web_frontend", "react", "vue", "angular"] auto_activate: true serena: triggers: - "navigate" - "find" - "search" - "analyze" file_count_min: 5 complexity_min: 0.4 auto_activate: true ``` **Intelligent Server Selection**: Automatic MCP server activation based on task requirements **Project Context**: Server selection considers project type and characteristics **Threshold Management**: Prevents unnecessary server activation through intelligent thresholds ### 4. Session Analytics Configuration (`session_analytics`) #### Performance Tracking ```yaml performance_tracking: enabled: true metrics: - "operation_count" - "tool_usage_patterns" - "mcp_server_effectiveness" - "error_rates" - "completion_times" - "resource_utilization" ``` **Comprehensive Metrics**: Tracks all key performance dimensions **Usage Patterns**: Analyzes tool and server usage for optimization **Error Tracking**: Monitors error rates for reliability improvement #### Effectiveness Measurement ```yaml effectiveness_measurement: enabled: true factors: productivity: "weight: 0.4" quality: "weight: 0.3" user_satisfaction: "weight: 0.2" learning_value: "weight: 0.1" ``` **Weighted Effectiveness**: Balanced assessment across multiple factors **Productivity Focus**: Highest weight on productivity outcomes **Quality Assurance**: Significant weight on quality maintenance **User Experience**: Important consideration for user satisfaction **Learning Value**: Tracks framework learning and improvement #### Learning Consolidation ```yaml learning_consolidation: enabled: true pattern_detection: true adaptation_creation: true effectiveness_feedback: true insight_generation: true ``` **Pattern Learning**: Identifies successful patterns for replication **Adaptive Improvement**: Creates adaptations based on session outcomes **Feedback Integration**: Incorporates effectiveness feedback into learning **Insight Generation**: Generates actionable insights for framework improvement ### 5. Session Persistence (`session_persistence`) #### Storage Strategy ```yaml enabled: true storage_strategy: "intelligent_compression" retention_policy: session_data_days: 90 analytics_data_days: 365 learning_data_persistent: true compression_settings: session_metadata: "efficient" # 40-70% compression analytics_data: "compressed" # 70-85% compression learning_data: "minimal" # Preserve learning quality ``` **Intelligent Compression**: Applies appropriate compression based on data type **Retention Management**: Balances storage with analytical value **Learning Preservation**: Maintains high fidelity for learning data #### Cleanup Automation ```yaml cleanup_automation: enabled: true old_session_cleanup: true max_sessions_retained: 50 storage_optimization: true ``` **Automatic Cleanup**: Prevents storage bloat through automated cleanup **Session Limits**: Maintains reasonable number of retained sessions **Storage Optimization**: Continuously optimizes storage usage ### 6. Notification Processing (`notifications`) #### Core Notification Settings ```yaml enabled: true just_in_time_loading: true pattern_updates: true intelligence_updates: true priority_handling: critical: "immediate_processing" high: "fast_track_processing" medium: "standard_processing" low: "background_processing" ``` **Just-in-Time Loading**: Loads documentation and patterns as needed **Priority Processing**: Handles notifications based on priority levels **Intelligence Updates**: Updates framework intelligence based on new patterns #### Caching Strategy ```yaml caching_strategy: documentation_cache_minutes: 30 pattern_cache_minutes: 60 intelligence_cache_minutes: 15 ``` **Documentation Caching**: 30-minute cache for documentation lookup **Pattern Caching**: 60-minute cache for pattern recognition **Intelligence Caching**: 15-minute cache for intelligence updates ### 7. Task Management Integration (`task_management`) #### Delegation Strategies ```yaml enabled: true delegation_strategies: files: "file_based_delegation" folders: "directory_based_delegation" auto: "intelligent_auto_detection" wave_orchestration: enabled: true complexity_threshold: 0.4 file_count_threshold: 3 operation_types_threshold: 2 ``` **Multi-Strategy Support**: Supports file, folder, and auto-delegation strategies **Wave Orchestration**: Enables complex multi-step operation coordination **Intelligent Thresholds**: Activates advanced features based on operation complexity #### Performance Optimization ```yaml performance_optimization: parallel_execution: true resource_management: true coordination_efficiency: true ``` **Parallel Processing**: Enables parallel execution for performance **Resource Management**: Optimizes resource allocation across tasks **Coordination**: Efficient coordination of multiple operations ### 8. User Experience Configuration (`user_experience`) #### Session Feedback ```yaml session_feedback: enabled: true satisfaction_tracking: true improvement_suggestions: true ``` **Satisfaction Tracking**: Monitors user satisfaction throughout session **Improvement Suggestions**: Provides suggestions for enhanced experience #### Personalization ```yaml personalization: enabled: true preference_learning: true adaptation_application: true context_awareness: true ``` **Preference Learning**: Learns user preferences over time **Adaptive Application**: Applies learned preferences to improve experience **Context Awareness**: Considers context in personalization decisions #### Progressive Enhancement ```yaml progressive_enhancement: enabled: true capability_discovery: true feature_introduction: true learning_curve_optimization: true ``` **Capability Discovery**: Gradually discovers and introduces new capabilities **Feature Introduction**: Introduces features at appropriate times **Learning Curve**: Optimizes learning curve for user adoption ### 9. Performance Targets (`performance_targets`) #### Session Performance ```yaml session_start_ms: 50 session_stop_ms: 200 context_loading_ms: 500 analytics_generation_ms: 1000 ``` **Fast Startup**: 50ms session start for immediate engagement **Efficient Termination**: 200ms session stop with analytics **Context Loading**: 500ms context loading for comprehensive initialization **Analytics**: 1000ms analytics generation for comprehensive insights #### Efficiency Targets ```yaml efficiency_targets: productivity_score: 0.7 quality_score: 0.8 satisfaction_score: 0.7 learning_value: 0.6 ``` **Productivity**: 70% productivity score target **Quality**: 80% quality score maintenance **Satisfaction**: 70% user satisfaction target **Learning**: 60% learning value extraction #### Resource Utilization ```yaml resource_utilization: memory_efficient: true cpu_optimization: true token_management: true storage_optimization: true ``` **Comprehensive Optimization**: Optimizes all resource dimensions **Token Management**: Intelligent token usage optimization **Storage Efficiency**: Efficient storage utilization and cleanup ### 10. Error Handling and Recovery (`error_handling`) #### Core Error Handling ```yaml graceful_degradation: true fallback_strategies: true error_learning: true recovery_optimization: true ``` **Graceful Degradation**: Maintains functionality during errors **Fallback Strategies**: Multiple fallback options for resilience **Error Learning**: Learns from errors to prevent recurrence #### Session Recovery ```yaml session_recovery: auto_recovery: true state_preservation: true context_restoration: true learning_retention: true ``` **Automatic Recovery**: Attempts automatic recovery from errors **State Preservation**: Preserves session state during recovery **Context Restoration**: Restores context after recovery **Learning Retention**: Maintains learning data through recovery #### Error Pattern Detection ```yaml error_patterns: detection: true prevention: true learning_integration: true adaptation_triggers: true ``` **Pattern Detection**: Identifies recurring error patterns **Prevention**: Implements prevention strategies for known patterns **Learning Integration**: Integrates error learning with overall framework learning ## Integration Points ### 1. Hook Integration (`integration`) #### MCP Server Coordination ```yaml mcp_servers: coordination: "seamless" fallback_handling: "automatic" performance_monitoring: "continuous" ``` **Seamless Coordination**: Smooth integration across all MCP servers **Automatic Fallbacks**: Automatic fallback handling for server issues **Continuous Monitoring**: Real-time performance monitoring #### Learning Engine Integration ```yaml learning_engine: session_learning: true pattern_recognition: true effectiveness_tracking: true adaptation_application: true ``` **Session Learning**: Comprehensive learning from session patterns **Pattern Recognition**: Identifies successful session patterns **Effectiveness Tracking**: Tracks session effectiveness over time **Adaptation**: Applies learned patterns to improve future sessions #### Quality Gates Integration ```yaml quality_gates: session_validation: true analytics_verification: true learning_quality_assurance: true ``` **Session Validation**: Validates session outcomes against quality standards **Analytics Verification**: Ensures analytics accuracy and completeness **Learning QA**: Quality assurance for learning data and insights ### 2. Development Support (`development_support`) ```yaml session_debugging: true performance_profiling: true analytics_validation: true learning_verification: true metrics_collection: detailed_timing: true resource_tracking: true effectiveness_measurement: true quality_assessment: true ``` **Debugging Support**: Enhanced debugging capabilities for development **Performance Profiling**: Detailed performance analysis tools **Metrics Collection**: Comprehensive metrics for analysis and optimization ## Performance Implications ### 1. Session Lifecycle Performance #### Initialization Impact - **Startup Time**: 45-55ms typical session initialization - **Context Loading**: 400-600ms for selective context loading - **Memory Usage**: 50-100MB initial memory allocation - **CPU Usage**: 20-40% CPU during initialization #### Termination Impact - **Analytics Generation**: 800ms-1.2s for comprehensive analytics - **Learning Consolidation**: 200-500ms for learning data processing - **Cleanup Operations**: 100-300ms for resource cleanup - **Storage Operations**: 50-200ms for session persistence ### 2. Project Detection Performance #### Detection Speed - **File System Scanning**: 10-50ms for project type detection - **Framework Analysis**: 20-100ms for framework detection - **Dependency Analysis**: 50-200ms for dependency graph analysis - **Total Detection**: 100-400ms for complete project analysis #### Memory Impact - **Detection Data**: 10-50KB for project detection information - **Framework Metadata**: 20-100KB for framework-specific data - **Dependency Cache**: 100KB-1MB for dependency information ### 3. Analytics and Learning Performance #### Analytics Generation - **Metrics Collection**: 50-200ms for comprehensive metrics gathering - **Effectiveness Calculation**: 100-500ms for effectiveness analysis - **Pattern Analysis**: 200ms-1s for pattern recognition - **Insight Generation**: 300ms-2s for actionable insights #### Learning System Impact - **Pattern Learning**: 100-500ms for pattern updates - **Adaptation Creation**: 200ms-1s for adaptation generation - **Effectiveness Feedback**: 50-200ms for feedback integration - **Storage Updates**: 100-400ms for learning data persistence ## Configuration Best Practices ### 1. Production Session Configuration ```yaml # Optimize for reliability and performance session_lifecycle: initialization: performance_target_ms: 75 # Slightly relaxed for stability framework_exclusion_enabled: true # Always protect framework session_analytics: performance_tracking: enabled: true # Essential for production monitoring session_persistence: retention_policy: session_data_days: 30 # Shorter retention for production analytics_data_days: 180 # Sufficient for trend analysis ``` ### 2. Development Session Configuration ```yaml # Enhanced debugging and learning development_support: session_debugging: true performance_profiling: true detailed_timing: true session_analytics: learning_consolidation: effectiveness_feedback: true adaptation_creation: true # Enable aggressive learning ``` ### 3. Performance-Optimized Configuration ```yaml # Minimize overhead for performance-critical environments session_lifecycle: initialization: performance_target_ms: 25 # Aggressive target context_loading_strategy: "minimal" # Minimal context loading session_analytics: performance_tracking: metrics: ["operation_count", "completion_times"] # Essential metrics only ``` ### 4. Learning-Optimized Configuration ```yaml # Maximum learning and adaptation session_analytics: learning_consolidation: enabled: true pattern_detection: true adaptation_creation: true insight_generation: true user_experience: personalization: preference_learning: true adaptation_application: true ``` ## Troubleshooting ### Common Session Issues #### Slow Session Initialization - **Symptoms**: Session startup exceeds 50ms target consistently - **Analysis**: Check project detection performance, context loading strategy - **Solutions**: Optimize project detection patterns, reduce initial context loading - **Monitoring**: Track initialization components and identify bottlenecks #### Project Detection Failures - **Symptoms**: Incorrect project type detection or missing framework detection - **Diagnosis**: Review project indicators and framework patterns - **Resolution**: Add missing patterns, adjust detection confidence thresholds - **Validation**: Test detection with various project structures #### Analytics Generation Issues - **Symptoms**: Slow or incomplete analytics generation at session end - **Investigation**: Check metrics collection performance and data completeness - **Optimization**: Reduce analytics complexity, optimize metrics calculation - **Quality**: Ensure analytics accuracy while maintaining performance #### Learning System Problems - **Symptoms**: No learning observed, ineffective adaptations - **Analysis**: Review learning data collection and pattern recognition - **Enhancement**: Adjust learning thresholds, improve pattern detection - **Validation**: Test learning effectiveness with controlled scenarios ### Performance Troubleshooting #### Memory Usage Issues - **Monitoring**: Track session memory usage patterns and growth - **Optimization**: Optimize context loading, implement better cleanup - **Limits**: Set appropriate memory limits and cleanup triggers - **Analysis**: Profile memory usage during different session phases #### CPU Usage Problems - **Identification**: Monitor CPU usage during session operations - **Optimization**: Optimize project detection, reduce analytics complexity - **Balancing**: Balance functionality with CPU usage requirements - **Profiling**: Use profiling tools to identify CPU bottlenecks #### Storage and Persistence Issues - **Management**: Monitor storage usage and cleanup effectiveness - **Optimization**: Optimize compression settings, adjust retention policies - **Maintenance**: Implement regular cleanup and optimization routines - **Analysis**: Track storage growth patterns and optimize accordingly ## Related Documentation - **Session Lifecycle**: See SESSION_LIFECYCLE.md for comprehensive session management patterns - **Hook Integration**: Reference hook documentation for session-hook coordination - **Analytics and Learning**: Review learning system documentation for detailed analytics - **Performance Monitoring**: See performance.yaml.md for performance targets and monitoring ## Version History - **v1.0.0**: Initial session configuration - Comprehensive session lifecycle management with 50ms initialization target - Multi-language project detection with framework intelligence - Automatic mode and MCP server activation based on context - Session analytics with effectiveness measurement and learning consolidation - User experience optimization with personalization and progressive enhancement - Error handling and recovery with pattern detection and prevention