# Modes Configuration (`modes.yaml`) ## Overview The `modes.yaml` file defines behavioral mode configurations for the SuperClaude-Lite framework. This configuration controls mode detection patterns, activation thresholds, coordination strategies, and integration patterns for all four SuperClaude behavioral modes. ## Purpose and Role The modes configuration serves as: - **Mode Detection Engine**: Defines trigger patterns and confidence thresholds for automatic mode activation - **Behavioral Configuration**: Specifies mode-specific settings and coordination patterns - **Integration Orchestration**: Manages mode coordination with hooks, MCP servers, and commands - **Performance Optimization**: Configures performance profiles and resource management for each mode - **Learning Integration**: Enables mode effectiveness tracking and adaptive optimization ## Configuration Structure ### 1. Mode Detection Patterns (`mode_detection`) #### Brainstorming Mode ```yaml brainstorming: description: "Interactive requirements discovery and exploration" activation_type: "automatic" confidence_threshold: 0.7 trigger_patterns: vague_requests: - "i want to build" - "thinking about" - "not sure" - "maybe we could" - "what if we" - "considering" exploration_keywords: - "brainstorm" - "explore" - "discuss" - "figure out" - "work through" - "think through" uncertainty_indicators: - "maybe" - "possibly" - "perhaps" - "could we" - "would it be possible" - "wondering if" project_initiation: - "new project" - "startup idea" - "feature concept" - "app idea" - "building something" ``` **Purpose**: Detects exploratory and uncertain requests that benefit from interactive dialogue **Activation**: Automatic with 70% confidence threshold **Behavioral Settings**: Collaborative, non-presumptive dialogue with adaptive discovery depth #### Task Management Mode ```yaml task_management: description: "Multi-layer task orchestration with delegation and wave systems" activation_type: "automatic" confidence_threshold: 0.8 trigger_patterns: multi_step_operations: - "build" - "implement" - "create" - "develop" - "set up" - "establish" scope_indicators: - "system" - "feature" - "comprehensive" - "complete" - "entire" - "full" complexity_indicators: - "complex" - "multiple" - "several" - "many" - "various" - "different" auto_activation_thresholds: file_count: 3 directory_count: 2 complexity_score: 0.4 operation_types: 2 ``` **Purpose**: Manages complex, multi-step operations requiring coordination and delegation **Activation**: Automatic with 80% confidence threshold and quantitative thresholds **Thresholds**: 3+ files, 2+ directories, 0.4+ complexity score, 2+ operation types #### Token Efficiency Mode ```yaml token_efficiency: description: "Intelligent token optimization with adaptive compression" activation_type: "automatic" confidence_threshold: 0.75 trigger_patterns: resource_constraints: - "context usage >75%" - "large-scale operations" - "resource constraints" - "memory pressure" user_requests: - "brief" - "concise" - "compressed" - "short" - "efficient" - "minimal" efficiency_needs: - "token optimization" - "resource optimization" - "efficiency" - "performance" ``` **Purpose**: Optimizes token usage through intelligent compression and symbol systems **Activation**: Automatic with 75% confidence threshold **Compression Levels**: Minimal (0-40%) through Emergency (95%+) #### Introspection Mode ```yaml introspection: description: "Meta-cognitive analysis and framework troubleshooting" activation_type: "automatic" confidence_threshold: 0.6 trigger_patterns: self_analysis: - "analyze reasoning" - "examine decision" - "reflect on" - "thinking process" - "decision logic" problem_solving: - "complex problem" - "multi-step" - "meta-cognitive" - "systematic thinking" error_recovery: - "outcomes don't match" - "errors occur" - "unexpected results" - "troubleshoot" framework_discussion: - "SuperClaude" - "framework" - "meta-conversation" - "system analysis" ``` **Purpose**: Enables meta-cognitive analysis and framework troubleshooting **Activation**: Automatic with 60% confidence threshold (lower threshold for broader detection) **Analysis Depth**: Meta-cognitive with high transparency and continuous pattern recognition ### 2. Mode Coordination Patterns (`mode_coordination`) #### Concurrent Mode Support ```yaml concurrent_modes: allowed_combinations: - ["brainstorming", "token_efficiency"] - ["task_management", "token_efficiency"] - ["introspection", "token_efficiency"] - ["task_management", "introspection"] coordination_strategies: brainstorming_efficiency: "compress_non_dialogue_content" task_management_efficiency: "compress_session_metadata" introspection_efficiency: "selective_analysis_compression" ``` **Purpose**: Enables multiple modes to work together efficiently **Token Efficiency Integration**: Can combine with any other mode for resource optimization **Coordination Strategies**: Mode-specific compression and optimization patterns #### Mode Transitions ```yaml mode_transitions: brainstorming_to_task_management: trigger: "requirements_clarified" handoff_data: ["brief", "requirements", "constraints"] task_management_to_introspection: trigger: "complex_issues_encountered" handoff_data: ["task_context", "performance_metrics", "issues"] any_to_token_efficiency: trigger: "resource_pressure" activation_priority: "immediate" ``` **Purpose**: Manages smooth transitions between modes with context preservation **Automatic Handoffs**: Seamless transitions based on contextual triggers **Data Preservation**: Critical context maintained during transitions ### 3. Performance Profiles (`performance_profiles`) #### Lightweight Profile ```yaml lightweight: target_response_time_ms: 100 memory_usage_mb: 25 cpu_utilization_percent: 20 token_optimization: "standard" ``` **Usage**: Token Efficiency Mode, simple operations **Characteristics**: Fast response, minimal resource usage, standard optimization #### Standard Profile ```yaml standard: target_response_time_ms: 200 memory_usage_mb: 50 cpu_utilization_percent: 40 token_optimization: "balanced" ``` **Usage**: Brainstorming Mode, typical operations **Characteristics**: Balanced performance and functionality #### Intensive Profile ```yaml intensive: target_response_time_ms: 500 memory_usage_mb: 100 cpu_utilization_percent: 70 token_optimization: "aggressive" ``` **Usage**: Task Management Mode, complex operations **Characteristics**: Higher resource usage for complex analysis and coordination ### 4. Mode-Specific Configurations (`mode_configurations`) #### Brainstorming Configuration ```yaml brainstorming: dialogue: max_rounds: 15 convergence_threshold: 0.85 context_preservation: "full" brief_generation: min_requirements: 3 include_context: true validation_criteria: ["clarity", "completeness", "actionability"] integration: auto_handoff: true prd_agent: "brainstorm-PRD" command_coordination: "/sc:brainstorm" ``` **Dialogue Management**: Up to 15 dialogue rounds with 85% convergence threshold **Brief Quality**: Minimum 3 requirements with comprehensive validation **Integration**: Automatic handoff to PRD agent with command coordination #### Task Management Configuration ```yaml task_management: delegation: default_strategy: "auto" concurrency_limit: 7 performance_monitoring: true wave_orchestration: auto_activation: true complexity_threshold: 0.4 coordination_strategy: "adaptive" analytics: real_time_tracking: true performance_metrics: true optimization_suggestions: true ``` **Delegation**: Auto-strategy with 7 concurrent operations and performance monitoring **Wave Orchestration**: Auto-activation at 0.4 complexity with adaptive coordination **Analytics**: Real-time tracking with comprehensive performance metrics #### Token Efficiency Configuration ```yaml token_efficiency: compression: adaptive_levels: true quality_thresholds: [0.98, 0.95, 0.90, 0.85, 0.80] symbol_systems: true abbreviation_systems: true selective_compression: framework_exclusion: true user_content_preservation: true session_data_optimization: true performance: processing_target_ms: 150 efficiency_target: 0.50 quality_preservation: 0.95 ``` **Compression**: 5-level adaptive compression with quality thresholds **Selective Application**: Framework protection with user content preservation **Performance**: 150ms processing target with 50% efficiency gain and 95% quality preservation #### Introspection Configuration ```yaml introspection: analysis: reasoning_depth: "comprehensive" pattern_detection: "continuous" bias_recognition: "active" transparency: thinking_process_exposure: true decision_logic_analysis: true assumption_validation: true learning: pattern_recognition: "continuous" effectiveness_tracking: true adaptation_suggestions: true ``` **Analysis Depth**: Comprehensive reasoning analysis with continuous pattern detection **Transparency**: Full exposure of thinking processes and decision logic **Learning**: Continuous pattern recognition with effectiveness tracking ### 5. Learning Integration (`learning_integration`) #### Effectiveness Tracking ```yaml learning_integration: mode_effectiveness_tracking: enabled: true metrics: - "activation_accuracy" - "user_satisfaction" - "task_completion_rates" - "performance_improvements" ``` **Metrics Collection**: Comprehensive effectiveness measurement across multiple dimensions **Continuous Monitoring**: Real-time tracking of mode performance and user satisfaction #### Adaptation Triggers ```yaml adaptation_triggers: effectiveness_threshold: 0.7 user_preference_weight: 0.8 performance_impact_weight: 0.6 ``` **Threshold Management**: 70% effectiveness threshold triggers adaptation **Preference Learning**: High weight on user preferences (80%) **Performance Balance**: Moderate weight on performance impact (60%) #### Pattern Learning ```yaml pattern_learning: user_specific: true project_specific: true context_aware: true cross_session: true ``` **Learning Scope**: Multi-dimensional learning across user, project, context, and time **Continuous Improvement**: Persistent learning across sessions for long-term optimization ### 6. Quality Gates Integration (`quality_gates`) ```yaml quality_gates: mode_activation: pattern_confidence: 0.6 context_appropriateness: 0.7 performance_readiness: true mode_coordination: conflict_resolution: "automatic" resource_allocation: "intelligent" performance_monitoring: "continuous" mode_effectiveness: real_time_monitoring: true adaptation_triggers: true quality_preservation: true ``` **Activation Quality**: Pattern confidence and context appropriateness thresholds **Coordination Quality**: Automatic conflict resolution with intelligent resource allocation **Effectiveness Quality**: Real-time monitoring with adaptation triggers ## Integration Points ### 1. Hook Integration (`integration_points.hooks`) ```yaml hooks: session_start: "mode_initialization" pre_tool_use: "mode_coordination" post_tool_use: "mode_effectiveness_tracking" stop: "mode_analytics_consolidation" ``` **Session Start**: Mode initialization and activation **Pre-Tool Use**: Mode coordination and optimization **Post-Tool Use**: Effectiveness tracking and validation **Stop**: Analytics consolidation and learning ### 2. MCP Server Integration (`integration_points.mcp_servers`) ```yaml mcp_servers: brainstorming: ["sequential", "context7"] task_management: ["serena", "morphllm"] token_efficiency: ["morphllm"] introspection: ["sequential"] ``` **Brainstorming**: Sequential reasoning with documentation access **Task Management**: Semantic analysis with intelligent editing **Token Efficiency**: Optimized editing for compression **Introspection**: Deep analysis for meta-cognitive examination ### 3. Command Integration (`integration_points.commands`) ```yaml commands: brainstorming: "/sc:brainstorm" task_management: ["/task", "/spawn", "/loop"] reflection: "/sc:reflect" ``` **Brainstorming**: Dedicated brainstorming command **Task Management**: Multi-command orchestration **Reflection**: Introspection and analysis command ## Performance Implications ### 1. Mode Detection Overhead #### Pattern Matching Performance - **Detection Time**: 10-50ms per mode evaluation - **Confidence Calculation**: 5-20ms per trigger pattern set - **Total Detection**: 50-200ms for all mode evaluations #### Memory Usage - **Pattern Storage**: 10-20KB per mode configuration - **Detection State**: 5-10KB during evaluation - **Total Memory**: 50-100KB for mode detection system ### 2. Mode Coordination Impact #### Concurrent Mode Overhead - **Coordination Logic**: 20-100ms for multi-mode coordination - **Resource Allocation**: 10-50ms for intelligent resource management - **Transition Handling**: 50-200ms for mode transitions with data preservation #### Resource Distribution - **CPU Allocation**: Dynamic based on mode performance profiles - **Memory Management**: Intelligent allocation based on mode requirements - **Token Optimization**: Coordinated across all active modes ### 3. Learning System Performance #### Effectiveness Tracking - **Metrics Collection**: 5-20ms per mode operation - **Pattern Analysis**: 50-200ms for pattern recognition updates - **Adaptation Application**: 100-500ms for mode parameter adjustments #### Storage Impact - **Learning Data**: 100-500KB per mode per session - **Pattern Storage**: 50-200KB persistent patterns per mode - **Total Learning**: 1-5MB learning data with compression ## Configuration Best Practices ### 1. Production Mode Configuration ```yaml # Optimize for reliability and performance mode_detection: brainstorming: confidence_threshold: 0.8 # Higher threshold for production task_management: auto_activation_thresholds: file_count: 5 # Higher threshold to prevent unnecessary activation ``` ### 2. Development Mode Configuration ```yaml # Lower thresholds for testing and experimentation mode_detection: introspection: confidence_threshold: 0.4 # Lower threshold for more introspection learning_integration: adaptation_triggers: effectiveness_threshold: 0.5 # More aggressive adaptation ``` ### 3. Performance-Optimized Configuration ```yaml # Minimal mode activation for performance-critical environments performance_profiles: lightweight: target_response_time_ms: 50 # Stricter performance targets mode_coordination: concurrent_modes: allowed_combinations: [] # Disable concurrent modes ``` ### 4. Learning-Optimized Configuration ```yaml # Maximum learning and adaptation learning_integration: pattern_learning: cross_session: true adaptation_frequency: "high" mode_effectiveness_tracking: detailed_analytics: true ``` ## Troubleshooting ### Common Mode Issues #### Mode Not Activating - **Check**: Trigger patterns match user input - **Verify**: Confidence threshold appropriate for use case - **Debug**: Log pattern matching results - **Adjust**: Lower confidence threshold or add trigger patterns #### Wrong Mode Activated - **Analysis**: Review trigger pattern specificity - **Solution**: Increase confidence thresholds or refine patterns - **Testing**: Test pattern matching with sample inputs - **Validation**: Monitor mode activation accuracy metrics #### Mode Coordination Conflicts - **Symptoms**: Multiple modes competing for resources - **Resolution**: Check allowed combinations and coordination strategies - **Optimization**: Adjust resource allocation and priority settings - **Monitoring**: Track coordination effectiveness metrics #### Performance Degradation - **Identification**: Monitor mode detection and coordination overhead - **Optimization**: Adjust performance profiles and thresholds - **Resource Management**: Review concurrent mode limitations - **Profiling**: Analyze mode-specific performance impact ### Learning System Troubleshooting #### No Learning Observed - **Check**: Learning integration enabled for relevant modes - **Verify**: Effectiveness tracking collecting data - **Debug**: Review adaptation trigger thresholds - **Fix**: Ensure learning data persistence and pattern storage #### Ineffective Adaptations - **Analysis**: Review effectiveness metrics and adaptation triggers - **Adjustment**: Modify effectiveness thresholds and learning weights - **Validation**: Test adaptation effectiveness with controlled scenarios - **Monitoring**: Track long-term learning trends and user satisfaction ## Related Documentation - **Mode Implementation**: See individual mode documentation (MODE_*.md files) - **Hook Integration**: Reference hook documentation for mode coordination - **MCP Server Coordination**: Review MCP server documentation for mode-specific optimization - **Command Integration**: See command documentation for mode-command coordination ## Version History - **v1.0.0**: Initial modes configuration - 4-mode behavioral system with comprehensive detection patterns - Mode coordination and transition management - Performance profiles and resource management - Learning integration with effectiveness tracking - Quality gates integration for mode validation