# Stop Hook Documentation ## Purpose The `stop` hook provides session analytics and persistence when Claude Code sessions end. It implements session summarization, learning consolidation, and data storage for continuous framework improvement. **Core Implementation**: Analyzes complete session history, consolidates learning events, generates performance metrics, and persists session data for future analysis with a target execution time of <200ms. ## Execution Context The stop hook runs at Claude Code session termination. According to `settings.json`, it has a 15-second timeout and executes via: `python3 ~/.claude/hooks/stop.py` **Actual Execution Flow:** 1. Receives session termination data via stdin (JSON) 2. Initializes StopHook class with analytics and learning components 3. Analyzes complete session history and performance data 4. Consolidates learning events and generates session insights 5. Persists session data and analytics for future reference 6. Outputs session summary and analytics via stdout (JSON) ## Performance Target **Primary Target**: <200ms execution time for complete session analytics ### Performance Benchmarks - **Initialization**: <50ms for component loading - **Analytics Generation**: <100ms for comprehensive analysis - **Session Persistence**: <30ms for data storage - **Learning Consolidation**: <20ms for learning events processing - **Total Processing**: <200ms end-to-end execution ### Performance Monitoring ```python execution_time = (time.time() - start_time) * 1000 target_met = execution_time < self.performance_target_ms ``` ## Session Analytics ### Comprehensive Performance Metrics #### Overall Score Calculation ```python overall_score = ( productivity * 0.4 + effectiveness * 0.4 + (1.0 - error_rate) * 0.2 ) ``` #### Performance Categories - **Productivity Score**: Operations per minute, completion rates - **Quality Score**: Error rates, operation success rates - **Intelligence Utilization**: MCP server usage, SuperClaude effectiveness - **Resource Efficiency**: Memory, CPU, token usage optimization - **User Satisfaction Estimate**: Derived from session patterns and outcomes #### Analytics Components ```yaml performance_metrics: overall_score: 0.85 # Combined performance indicator productivity_score: 0.78 # Operations efficiency quality_score: 0.92 # Error-free execution rate efficiency_score: 0.84 # Resource utilization satisfaction_estimate: 0.87 # Estimated user satisfaction ``` ### Bottleneck Identification - **High Error Rate**: >20% operation failure rate - **Low Productivity**: <50% productivity score - **Underutilized Intelligence**: <30% MCP usage with SuperClaude enabled - **Resource Constraints**: Memory/CPU/token usage optimization opportunities ### Optimization Opportunities Detection - **Tool Usage Optimization**: >10 unique tools suggest coordination improvement - **MCP Server Coordination**: <2 servers with >5 operations suggest better orchestration - **Workflow Enhancement**: Pattern analysis for efficiency improvements ## Learning Consolidation ### Learning Events Processing The hook consolidates all learning events generated during the session: ```python def _consolidate_learning_events(self, context: dict) -> dict: # Generate learning insights from session insights = self.learning_engine.generate_learning_insights() # Session-specific learning metrics session_learning = { 'session_effectiveness': context.get('superclaude_effectiveness', 0), 'performance_score': context.get('session_productivity', 0), 'mcp_coordination_effectiveness': min(context.get('mcp_usage_ratio', 0) * 2, 1.0), 'error_recovery_success': 1.0 - context.get('error_rate', 0) } ``` ### Learning Categories - **Effectiveness Feedback**: Session performance patterns - **User Preferences**: Interaction and usage patterns - **Technical Patterns**: Tool usage and coordination effectiveness - **Error Recovery**: Success patterns for error handling ### Adaptation Creation - **Session-Level Adaptations**: Immediate session pattern learning - **User-Level Adaptations**: Long-term preference learning - **Technical Adaptations**: Tool and workflow optimization patterns ## Session Persistence ### Intelligent Storage Strategy #### Data Classification - **Session Analytics**: Complete performance and effectiveness data - **Learning Events**: Consolidated learning insights and adaptations - **Context Data**: Session operational context and metadata - **Recommendations**: Generated suggestions for future sessions #### Compression Logic ```python # Apply compression for large session data if len(analytics_data) > 10000: # 10KB threshold compression_result = self.compression_engine.compress_content( analytics_data, context, {'content_type': 'session_data'} ) ``` #### Storage Optimization - **Session Cleanup**: Maintains 50 most recent sessions - **Automatic Pruning**: Removes sessions older than retention policy - **Compression**: Applied to sessions >10KB for storage efficiency ### Persistence Results ```yaml persistence_result: persistence_enabled: true session_data_saved: true analytics_saved: true learning_data_saved: true compression_applied: true compression_ratio: 0.65 storage_optimized: true ``` ## Recommendations Generation ### Performance Improvements Generated when overall score <70%: - Focus on reducing error rate through validation - Enable more SuperClaude intelligence features - Optimize tool selection and usage patterns ### SuperClaude Optimizations Based on framework effectiveness analysis: - **Low Effectiveness (<60%)**: Enable more MCP servers, use delegation features - **Disabled Framework**: Recommend SuperClaude enablement for productivity - **Underutilization**: Activate compression and intelligence features ### Learning Suggestions - **Low Learning Events (<3)**: Engage with more complex operations - **Pattern Recognition**: Suggestions based on successful session patterns - **Workflow Enhancement**: Recommendations for process improvements ### Workflow Enhancements Based on error patterns and efficiency analysis: - **High Error Rate (>10%)**: Use validation hooks, enable pre-tool intelligence - **Resource Optimization**: Memory, CPU, token usage improvements - **Coordination Enhancement**: Better MCP server and tool coordination ## Configuration ### Hook Configuration Loaded from `superclaude-config.json` hook configuration: ```yaml stop_hook: performance_target_ms: 200 analytics: comprehensive_metrics: true learning_consolidation: true recommendation_generation: true persistence: enabled: true compression_threshold_bytes: 10000 session_retention_count: 50 learning: session_adaptations: true user_preference_tracking: true technical_pattern_learning: true ``` ### Session Configuration Falls back to session.yaml configuration when available: ```yaml session: analytics_enabled: true learning_consolidation: true performance_tracking: true recommendation_generation: true persistence_optimization: true ``` ## Integration with /sc:save ### Command Implementation The Stop Hook directly implements the `/sc:save` command logic: #### Core /sc:save Features - **Session Analytics**: Complete session performance analysis - **Learning Consolidation**: All learning events processed and stored - **Intelligent Persistence**: Session data saved with optimization - **Recommendation Generation**: Actionable suggestions for improvement - **Performance Tracking**: <200ms execution time monitoring #### /sc:save Workflow Integration ```python def process_session_stop(self, session_data: dict) -> dict: # 1. Extract session context context = self._extract_session_context(session_data) # 2. Analyze session performance (/sc:save analytics) performance_analysis = self._analyze_session_performance(context) # 3. Consolidate learning events (/sc:save learning) learning_consolidation = self._consolidate_learning_events(context) # 4. Generate session analytics (/sc:save metrics) session_analytics = self._generate_session_analytics(...) # 5. Perform session persistence (/sc:save storage) persistence_result = self._perform_session_persistence(...) # 6. Generate recommendations (/sc:save recommendations) recommendations = self._generate_recommendations(...) ``` ### /sc:save Output Format ```yaml session_report: session_id: "session_2025-01-31_14-30-00" session_completed: true completion_timestamp: 1704110400 analytics: session_summary: {...} performance_metrics: {...} superclaude_effectiveness: {...} quality_analysis: {...} learning_summary: {...} persistence: persistence_enabled: true analytics_saved: true compression_applied: true recommendations: performance_improvements: [...] superclaude_optimizations: [...] learning_suggestions: [...] workflow_enhancements: [...] ``` ## Quality Assessment ### Session Success Criteria A session is considered successful when: - **Overall Score**: >60% performance score - **SuperClaude Effectiveness**: >60% when framework enabled - **Learning Achievement**: >0 insights generated - **Recommendations**: Actionable suggestions provided ### Quality Metrics ```yaml quality_analysis: error_rate: 0.05 # 5% error rate operation_success_rate: 0.95 # 95% success rate bottlenecks: ["low_productivity"] # Identified issues optimization_opportunities: [...] # Improvement areas ``` ### Success Indicators - **Session Success**: `overall_score > 0.6` - **SuperClaude Effective**: `effectiveness_score > 0.6` - **Learning Achieved**: `insights_generated > 0` - **Recommendations Generated**: `total_recommendations > 0` ### User Satisfaction Estimation ```python def _estimate_user_satisfaction(self, context: dict) -> float: satisfaction_factors = [] # Error rate impact satisfaction_factors.append(1.0 - error_rate) # Productivity impact satisfaction_factors.append(productivity) # SuperClaude effectiveness impact if superclaude_enabled: satisfaction_factors.append(effectiveness) # Session duration optimization (15-60 minutes optimal) satisfaction_factors.append(duration_satisfaction) return statistics.mean(satisfaction_factors) ``` ## Error Handling ### Graceful Degradation When errors occur during hook execution: ```python except Exception as e: log_error("stop", str(e), {"session_data": session_data}) return self._create_fallback_report(session_data, str(e)) ``` ### Fallback Reporting ```yaml fallback_report: session_completed: false error: "Analysis engine failure" fallback_mode: true analytics: performance_metrics: overall_score: 0.0 persistence: persistence_enabled: false ``` ### Recovery Strategies - **Analytics Failure**: Provide basic session summary - **Persistence Failure**: Continue with recommendations generation - **Learning Engine Error**: Skip learning consolidation, continue with core analytics - **Complete Failure**: Return minimal session completion report ## Performance Optimization ### Efficiency Strategies - **Lazy Loading**: Components initialized only when needed - **Batch Processing**: Multiple analytics operations combined - **Compression**: Large session data automatically compressed - **Caching**: Learning insights cached for reuse ### Resource Management - **Memory Optimization**: Session cleanup after processing - **Storage Efficiency**: Old sessions automatically pruned - **Processing Time**: <200ms target with continuous monitoring - **Token Efficiency**: Compressed analytics data when appropriate ## Future Enhancements ### Planned Features - **Cross-Session Analytics**: Performance trends across multiple sessions - **Predictive Recommendations**: ML-based optimization suggestions - **Real-Time Monitoring**: Live session analytics during execution - **Collaborative Learning**: Shared learning patterns across users - **Advanced Compression**: Context-aware compression algorithms ### Integration Opportunities - **Dashboard Integration**: Real-time analytics visualization - **Notification System**: Alerts for performance degradation - **API Endpoints**: Session analytics via REST API - **Export Capabilities**: Analytics data export for external analysis --- *The Stop Hook represents the culmination of session management in SuperClaude Framework, providing comprehensive analytics, learning consolidation, and intelligent persistence to enable continuous improvement and optimization of user productivity.*