# PM Agent Context **Project**: SuperClaude_Framework **Type**: AI Agent Framework **Tech Stack**: Claude Code, MCP Servers, Markdown-based configuration **Current Focus**: Token-efficient architecture with progressive context loading ## Project Overview SuperClaude is a comprehensive framework for Claude Code that provides: - Persona-based specialized agents (frontend, backend, security, etc.) - MCP server integrations (Context7, Magic, Morphllm, Sequential, etc.) - Slash command system for workflow automation - Self-improvement workflow with PDCA cycle - **NEW**: Token-optimized PM Agent with progressive loading ## Architecture - `superclaude/agents/` - Agent persona definitions - `superclaude/commands/` - Slash command definitions (pm.md: token-efficient redesign) - `docs/` - Documentation and patterns - `docs/memory/` - PM Agent session state (local files) - `docs/pdca/` - PDCA cycle documentation per feature - `docs/research/` - Research reports (llm-agent-token-efficiency-2025.md) ## Token Efficiency Architecture (2025-10-17 Redesign) ### Layer 0: Bootstrap (Always Active) - **Token Cost**: 150 tokens (95% reduction from old 2,300 tokens) - **Operations**: Time awareness + repo detection + session initialization - **Philosophy**: User Request First - NO auto-loading before understanding intent ### Intent Classification System ```yaml Ultra-Light (100-500 tokens): "進捗", "progress", "status" → Layer 1 only Light (500-2K tokens): "typo", "rename", "comment" → Layer 2 (target file) Medium (2-5K tokens): "bug", "fix", "refactor" → Layer 3 (related files) Heavy (5-20K tokens): "feature", "architecture" → Layer 4 (subsystem) Ultra-Heavy (20K+ tokens): "redesign", "migration" → Layer 5 (full + research) ``` ### Progressive Loading (5-Layer Strategy) - **Layer 1**: Minimal context (mindbase: 500 tokens | fallback: 800 tokens) - **Layer 2**: Target context (500-1K tokens) - **Layer 3**: Related context (mindbase: 3-4K | fallback: 4.5K) - **Layer 4**: System context (8-12K tokens, user confirmation) - **Layer 5**: External research (20-50K tokens, WARNING required) ### Workflow Metrics Collection - **File**: `docs/memory/workflow_metrics.jsonl` - **Purpose**: Continuous A/B testing for workflow optimization - **Data**: task_type, complexity, workflow_id, tokens_used, time_ms, success - **Strategy**: ε-greedy (80% best workflow, 20% experimental) ### mindbase Integration Incentive - **Layer 1**: 500 tokens (mindbase) vs 800 tokens (fallback) = **38% savings** - **Layer 3**: 3-4K tokens (mindbase) vs 4.5K tokens (fallback) = **20% savings** - **Total Potential**: Up to **90% token reduction** with semantic search (industry benchmark) ## Active Patterns - **Repository-Scoped Memory**: Local file-based memory in `docs/memory/` - **PDCA Cycle**: Plan → Do → Check → Act documentation workflow - **Self-Evaluation Checklists**: Replace Serena MCP `think_about_*` functions - **User Request First**: Bootstrap → Wait → Intent → Progressive Load → Execute - **Continuous Optimization**: A/B testing via workflow_metrics.jsonl ## Recent Changes (2025-10-17) ### PM Agent Token Efficiency Redesign - **Removed**: Auto-loading 7 files on startup (2,300 tokens wasted) - **Added**: Layer 0 Bootstrap (150 tokens) + Intent Classification - **Added**: Progressive Loading (5-layer) + Workflow Metrics - **Result**: - Ultra-Light tasks: 2,300 → 650 tokens (72% reduction) - Light tasks: 3,500 → 1,200 tokens (66% reduction) - Medium tasks: 7,000 → 4,500 tokens (36% reduction) ### Research Integration - **Report**: `docs/research/llm-agent-token-efficiency-2025.md` - **Benchmarks**: Trajectory Reduction (99%), AgentDropout (21.6%), Vector DB (90%) - **Source**: Anthropic, Microsoft AutoGen v0.4, CrewAI + Mem0, LangChain ## Known Issues None currently. ## Last Updated 2025-10-17