mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-29 16:16:08 +00:00
383 lines
13 KiB
Markdown
383 lines
13 KiB
Markdown
|
|
# Stop Hook Documentation
|
||
|
|
|
||
|
|
## Overview
|
||
|
|
|
||
|
|
The Stop Hook is a comprehensive session analytics and persistence engine that runs at the end of each Claude Code session. It implements the `/sc:save` logic with advanced performance tracking, providing detailed analytics about session effectiveness, learning consolidation, and intelligent session data storage.
|
||
|
|
|
||
|
|
## Purpose
|
||
|
|
|
||
|
|
The Stop Hook serves as the primary session analytics and persistence system for SuperClaude Framework, delivering:
|
||
|
|
|
||
|
|
- **Session Analytics**: Comprehensive performance and effectiveness metrics
|
||
|
|
- **Learning Consolidation**: Consolidation of learning events from the entire session
|
||
|
|
- **Session Persistence**: Intelligent session data storage with compression
|
||
|
|
- **Performance Optimization**: Recommendations for future sessions based on analytics
|
||
|
|
- **Quality Assessment**: Session success evaluation and improvement suggestions
|
||
|
|
- **Framework Effectiveness**: Measurement of SuperClaude framework impact
|
||
|
|
|
||
|
|
## Execution Context
|
||
|
|
|
||
|
|
### When This Hook Runs
|
||
|
|
- **Trigger**: Session termination in Claude Code
|
||
|
|
- **Context**: End of user session, before final cleanup
|
||
|
|
- **Data Available**: Complete session history, operations log, error records
|
||
|
|
- **Timing**: After all user operations completed, before session cleanup
|
||
|
|
|
||
|
|
### Hook Integration Points
|
||
|
|
- **Session Lifecycle**: Final stage of session processing
|
||
|
|
- **MCP Intelligence**: Coordinates with MCP servers for enhanced analytics
|
||
|
|
- **Learning Engine**: Consolidates learning events and adaptations
|
||
|
|
- **Framework Logic**: Applies SuperClaude framework patterns for analysis
|
||
|
|
|
||
|
|
## Performance Target
|
||
|
|
|
||
|
|
**Primary Target**: <200ms execution time for complete session analytics
|
||
|
|
|
||
|
|
### Performance Benchmarks
|
||
|
|
- **Initialization**: <50ms for component loading
|
||
|
|
- **Analytics Generation**: <100ms for comprehensive analysis
|
||
|
|
- **Session Persistence**: <30ms for data storage
|
||
|
|
- **Learning Consolidation**: <20ms for learning events processing
|
||
|
|
- **Total Processing**: <200ms end-to-end execution
|
||
|
|
|
||
|
|
### Performance Monitoring
|
||
|
|
```python
|
||
|
|
execution_time = (time.time() - start_time) * 1000
|
||
|
|
target_met = execution_time < self.performance_target_ms
|
||
|
|
```
|
||
|
|
|
||
|
|
## Session Analytics
|
||
|
|
|
||
|
|
### Comprehensive Performance Metrics
|
||
|
|
|
||
|
|
#### Overall Score Calculation
|
||
|
|
```python
|
||
|
|
overall_score = (
|
||
|
|
productivity * 0.4 +
|
||
|
|
effectiveness * 0.4 +
|
||
|
|
(1.0 - error_rate) * 0.2
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Performance Categories
|
||
|
|
- **Productivity Score**: Operations per minute, completion rates
|
||
|
|
- **Quality Score**: Error rates, operation success rates
|
||
|
|
- **Intelligence Utilization**: MCP server usage, SuperClaude effectiveness
|
||
|
|
- **Resource Efficiency**: Memory, CPU, token usage optimization
|
||
|
|
- **User Satisfaction Estimate**: Derived from session patterns and outcomes
|
||
|
|
|
||
|
|
#### Analytics Components
|
||
|
|
```yaml
|
||
|
|
performance_metrics:
|
||
|
|
overall_score: 0.85 # Combined performance indicator
|
||
|
|
productivity_score: 0.78 # Operations efficiency
|
||
|
|
quality_score: 0.92 # Error-free execution rate
|
||
|
|
efficiency_score: 0.84 # Resource utilization
|
||
|
|
satisfaction_estimate: 0.87 # Estimated user satisfaction
|
||
|
|
```
|
||
|
|
|
||
|
|
### Bottleneck Identification
|
||
|
|
- **High Error Rate**: >20% operation failure rate
|
||
|
|
- **Low Productivity**: <50% productivity score
|
||
|
|
- **Underutilized Intelligence**: <30% MCP usage with SuperClaude enabled
|
||
|
|
- **Resource Constraints**: Memory/CPU/token usage optimization opportunities
|
||
|
|
|
||
|
|
### Optimization Opportunities Detection
|
||
|
|
- **Tool Usage Optimization**: >10 unique tools suggest coordination improvement
|
||
|
|
- **MCP Server Coordination**: <2 servers with >5 operations suggest better orchestration
|
||
|
|
- **Workflow Enhancement**: Pattern analysis for efficiency improvements
|
||
|
|
|
||
|
|
## Learning Consolidation
|
||
|
|
|
||
|
|
### Learning Events Processing
|
||
|
|
The hook consolidates all learning events generated during the session:
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _consolidate_learning_events(self, context: dict) -> dict:
|
||
|
|
# Generate learning insights from session
|
||
|
|
insights = self.learning_engine.generate_learning_insights()
|
||
|
|
|
||
|
|
# Session-specific learning metrics
|
||
|
|
session_learning = {
|
||
|
|
'session_effectiveness': context.get('superclaude_effectiveness', 0),
|
||
|
|
'performance_score': context.get('session_productivity', 0),
|
||
|
|
'mcp_coordination_effectiveness': min(context.get('mcp_usage_ratio', 0) * 2, 1.0),
|
||
|
|
'error_recovery_success': 1.0 - context.get('error_rate', 0)
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
### Learning Categories
|
||
|
|
- **Effectiveness Feedback**: Session performance patterns
|
||
|
|
- **User Preferences**: Interaction and usage patterns
|
||
|
|
- **Technical Patterns**: Tool usage and coordination effectiveness
|
||
|
|
- **Error Recovery**: Success patterns for error handling
|
||
|
|
|
||
|
|
### Adaptation Creation
|
||
|
|
- **Session-Level Adaptations**: Immediate session pattern learning
|
||
|
|
- **User-Level Adaptations**: Long-term preference learning
|
||
|
|
- **Technical Adaptations**: Tool and workflow optimization patterns
|
||
|
|
|
||
|
|
## Session Persistence
|
||
|
|
|
||
|
|
### Intelligent Storage Strategy
|
||
|
|
|
||
|
|
#### Data Classification
|
||
|
|
- **Session Analytics**: Complete performance and effectiveness data
|
||
|
|
- **Learning Events**: Consolidated learning insights and adaptations
|
||
|
|
- **Context Data**: Session operational context and metadata
|
||
|
|
- **Recommendations**: Generated suggestions for future sessions
|
||
|
|
|
||
|
|
#### Compression Logic
|
||
|
|
```python
|
||
|
|
# Apply compression for large session data
|
||
|
|
if len(analytics_data) > 10000: # 10KB threshold
|
||
|
|
compression_result = self.compression_engine.compress_content(
|
||
|
|
analytics_data,
|
||
|
|
context,
|
||
|
|
{'content_type': 'session_data'}
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Storage Optimization
|
||
|
|
- **Session Cleanup**: Maintains 50 most recent sessions
|
||
|
|
- **Automatic Pruning**: Removes sessions older than retention policy
|
||
|
|
- **Compression**: Applied to sessions >10KB for storage efficiency
|
||
|
|
|
||
|
|
### Persistence Results
|
||
|
|
```yaml
|
||
|
|
persistence_result:
|
||
|
|
persistence_enabled: true
|
||
|
|
session_data_saved: true
|
||
|
|
analytics_saved: true
|
||
|
|
learning_data_saved: true
|
||
|
|
compression_applied: true
|
||
|
|
compression_ratio: 0.65
|
||
|
|
storage_optimized: true
|
||
|
|
```
|
||
|
|
|
||
|
|
## Recommendations Generation
|
||
|
|
|
||
|
|
### Performance Improvements
|
||
|
|
Generated when overall score <70%:
|
||
|
|
- Focus on reducing error rate through validation
|
||
|
|
- Enable more SuperClaude intelligence features
|
||
|
|
- Optimize tool selection and usage patterns
|
||
|
|
|
||
|
|
### SuperClaude Optimizations
|
||
|
|
Based on framework effectiveness analysis:
|
||
|
|
- **Low Effectiveness (<60%)**: Enable more MCP servers, use delegation features
|
||
|
|
- **Disabled Framework**: Recommend SuperClaude enablement for productivity
|
||
|
|
- **Underutilization**: Activate compression and intelligence features
|
||
|
|
|
||
|
|
### Learning Suggestions
|
||
|
|
- **Low Learning Events (<3)**: Engage with more complex operations
|
||
|
|
- **Pattern Recognition**: Suggestions based on successful session patterns
|
||
|
|
- **Workflow Enhancement**: Recommendations for process improvements
|
||
|
|
|
||
|
|
### Workflow Enhancements
|
||
|
|
Based on error patterns and efficiency analysis:
|
||
|
|
- **High Error Rate (>10%)**: Use validation hooks, enable pre-tool intelligence
|
||
|
|
- **Resource Optimization**: Memory, CPU, token usage improvements
|
||
|
|
- **Coordination Enhancement**: Better MCP server and tool coordination
|
||
|
|
|
||
|
|
## Configuration
|
||
|
|
|
||
|
|
### Hook Configuration
|
||
|
|
Loaded from `superclaude-config.json` hook configuration:
|
||
|
|
|
||
|
|
```yaml
|
||
|
|
stop_hook:
|
||
|
|
performance_target_ms: 200
|
||
|
|
analytics:
|
||
|
|
comprehensive_metrics: true
|
||
|
|
learning_consolidation: true
|
||
|
|
recommendation_generation: true
|
||
|
|
persistence:
|
||
|
|
enabled: true
|
||
|
|
compression_threshold_bytes: 10000
|
||
|
|
session_retention_count: 50
|
||
|
|
learning:
|
||
|
|
session_adaptations: true
|
||
|
|
user_preference_tracking: true
|
||
|
|
technical_pattern_learning: true
|
||
|
|
```
|
||
|
|
|
||
|
|
### Session Configuration
|
||
|
|
Falls back to session.yaml configuration when available:
|
||
|
|
|
||
|
|
```yaml
|
||
|
|
session:
|
||
|
|
analytics_enabled: true
|
||
|
|
learning_consolidation: true
|
||
|
|
performance_tracking: true
|
||
|
|
recommendation_generation: true
|
||
|
|
persistence_optimization: true
|
||
|
|
```
|
||
|
|
|
||
|
|
## Integration with /sc:save
|
||
|
|
|
||
|
|
### Command Implementation
|
||
|
|
The Stop Hook directly implements the `/sc:save` command logic:
|
||
|
|
|
||
|
|
#### Core /sc:save Features
|
||
|
|
- **Session Analytics**: Complete session performance analysis
|
||
|
|
- **Learning Consolidation**: All learning events processed and stored
|
||
|
|
- **Intelligent Persistence**: Session data saved with optimization
|
||
|
|
- **Recommendation Generation**: Actionable suggestions for improvement
|
||
|
|
- **Performance Tracking**: <200ms execution time monitoring
|
||
|
|
|
||
|
|
#### /sc:save Workflow Integration
|
||
|
|
```python
|
||
|
|
def process_session_stop(self, session_data: dict) -> dict:
|
||
|
|
# 1. Extract session context
|
||
|
|
context = self._extract_session_context(session_data)
|
||
|
|
|
||
|
|
# 2. Analyze session performance (/sc:save analytics)
|
||
|
|
performance_analysis = self._analyze_session_performance(context)
|
||
|
|
|
||
|
|
# 3. Consolidate learning events (/sc:save learning)
|
||
|
|
learning_consolidation = self._consolidate_learning_events(context)
|
||
|
|
|
||
|
|
# 4. Generate session analytics (/sc:save metrics)
|
||
|
|
session_analytics = self._generate_session_analytics(...)
|
||
|
|
|
||
|
|
# 5. Perform session persistence (/sc:save storage)
|
||
|
|
persistence_result = self._perform_session_persistence(...)
|
||
|
|
|
||
|
|
# 6. Generate recommendations (/sc:save recommendations)
|
||
|
|
recommendations = self._generate_recommendations(...)
|
||
|
|
```
|
||
|
|
|
||
|
|
### /sc:save Output Format
|
||
|
|
```yaml
|
||
|
|
session_report:
|
||
|
|
session_id: "session_2025-01-31_14-30-00"
|
||
|
|
session_completed: true
|
||
|
|
completion_timestamp: 1704110400
|
||
|
|
|
||
|
|
analytics:
|
||
|
|
session_summary: {...}
|
||
|
|
performance_metrics: {...}
|
||
|
|
superclaude_effectiveness: {...}
|
||
|
|
quality_analysis: {...}
|
||
|
|
learning_summary: {...}
|
||
|
|
|
||
|
|
persistence:
|
||
|
|
persistence_enabled: true
|
||
|
|
analytics_saved: true
|
||
|
|
compression_applied: true
|
||
|
|
|
||
|
|
recommendations:
|
||
|
|
performance_improvements: [...]
|
||
|
|
superclaude_optimizations: [...]
|
||
|
|
learning_suggestions: [...]
|
||
|
|
workflow_enhancements: [...]
|
||
|
|
```
|
||
|
|
|
||
|
|
## Quality Assessment
|
||
|
|
|
||
|
|
### Session Success Criteria
|
||
|
|
A session is considered successful when:
|
||
|
|
- **Overall Score**: >60% performance score
|
||
|
|
- **SuperClaude Effectiveness**: >60% when framework enabled
|
||
|
|
- **Learning Achievement**: >0 insights generated
|
||
|
|
- **Recommendations**: Actionable suggestions provided
|
||
|
|
|
||
|
|
### Quality Metrics
|
||
|
|
```yaml
|
||
|
|
quality_analysis:
|
||
|
|
error_rate: 0.05 # 5% error rate
|
||
|
|
operation_success_rate: 0.95 # 95% success rate
|
||
|
|
bottlenecks: ["low_productivity"] # Identified issues
|
||
|
|
optimization_opportunities: [...] # Improvement areas
|
||
|
|
```
|
||
|
|
|
||
|
|
### Success Indicators
|
||
|
|
- **Session Success**: `overall_score > 0.6`
|
||
|
|
- **SuperClaude Effective**: `effectiveness_score > 0.6`
|
||
|
|
- **Learning Achieved**: `insights_generated > 0`
|
||
|
|
- **Recommendations Generated**: `total_recommendations > 0`
|
||
|
|
|
||
|
|
### User Satisfaction Estimation
|
||
|
|
```python
|
||
|
|
def _estimate_user_satisfaction(self, context: dict) -> float:
|
||
|
|
satisfaction_factors = []
|
||
|
|
|
||
|
|
# Error rate impact
|
||
|
|
satisfaction_factors.append(1.0 - error_rate)
|
||
|
|
|
||
|
|
# Productivity impact
|
||
|
|
satisfaction_factors.append(productivity)
|
||
|
|
|
||
|
|
# SuperClaude effectiveness impact
|
||
|
|
if superclaude_enabled:
|
||
|
|
satisfaction_factors.append(effectiveness)
|
||
|
|
|
||
|
|
# Session duration optimization (15-60 minutes optimal)
|
||
|
|
satisfaction_factors.append(duration_satisfaction)
|
||
|
|
|
||
|
|
return statistics.mean(satisfaction_factors)
|
||
|
|
```
|
||
|
|
|
||
|
|
## Error Handling
|
||
|
|
|
||
|
|
### Graceful Degradation
|
||
|
|
When errors occur during hook execution:
|
||
|
|
|
||
|
|
```python
|
||
|
|
except Exception as e:
|
||
|
|
log_error("stop", str(e), {"session_data": session_data})
|
||
|
|
return self._create_fallback_report(session_data, str(e))
|
||
|
|
```
|
||
|
|
|
||
|
|
### Fallback Reporting
|
||
|
|
```yaml
|
||
|
|
fallback_report:
|
||
|
|
session_completed: false
|
||
|
|
error: "Analysis engine failure"
|
||
|
|
fallback_mode: true
|
||
|
|
analytics:
|
||
|
|
performance_metrics:
|
||
|
|
overall_score: 0.0
|
||
|
|
persistence:
|
||
|
|
persistence_enabled: false
|
||
|
|
```
|
||
|
|
|
||
|
|
### Recovery Strategies
|
||
|
|
- **Analytics Failure**: Provide basic session summary
|
||
|
|
- **Persistence Failure**: Continue with recommendations generation
|
||
|
|
- **Learning Engine Error**: Skip learning consolidation, continue with core analytics
|
||
|
|
- **Complete Failure**: Return minimal session completion report
|
||
|
|
|
||
|
|
## Performance Optimization
|
||
|
|
|
||
|
|
### Efficiency Strategies
|
||
|
|
- **Lazy Loading**: Components initialized only when needed
|
||
|
|
- **Batch Processing**: Multiple analytics operations combined
|
||
|
|
- **Compression**: Large session data automatically compressed
|
||
|
|
- **Caching**: Learning insights cached for reuse
|
||
|
|
|
||
|
|
### Resource Management
|
||
|
|
- **Memory Optimization**: Session cleanup after processing
|
||
|
|
- **Storage Efficiency**: Old sessions automatically pruned
|
||
|
|
- **Processing Time**: <200ms target with continuous monitoring
|
||
|
|
- **Token Efficiency**: Compressed analytics data when appropriate
|
||
|
|
|
||
|
|
## Future Enhancements
|
||
|
|
|
||
|
|
### Planned Features
|
||
|
|
- **Cross-Session Analytics**: Performance trends across multiple sessions
|
||
|
|
- **Predictive Recommendations**: ML-based optimization suggestions
|
||
|
|
- **Real-Time Monitoring**: Live session analytics during execution
|
||
|
|
- **Collaborative Learning**: Shared learning patterns across users
|
||
|
|
- **Advanced Compression**: Context-aware compression algorithms
|
||
|
|
|
||
|
|
### Integration Opportunities
|
||
|
|
- **Dashboard Integration**: Real-time analytics visualization
|
||
|
|
- **Notification System**: Alerts for performance degradation
|
||
|
|
- **API Endpoints**: Session analytics via REST API
|
||
|
|
- **Export Capabilities**: Analytics data export for external analysis
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
*The Stop Hook represents the culmination of session management in SuperClaude Framework, providing comprehensive analytics, learning consolidation, and intelligent persistence to enable continuous improvement and optimization of user productivity.*
|