mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-29 16:16:08 +00:00
1071 lines
39 KiB
Markdown
1071 lines
39 KiB
Markdown
|
|
# Notification Hook Documentation
|
||
|
|
|
||
|
|
## Overview
|
||
|
|
|
||
|
|
The notification hook implements just-in-time capability loading and pattern updates for the SuperClaude-Lite framework. This hook runs on notification events in Claude Code and provides intelligent, on-demand resource loading instead of upfront documentation loading, enabling a pattern-driven approach that reduces context usage by 90%.
|
||
|
|
|
||
|
|
## Purpose
|
||
|
|
|
||
|
|
**Just-in-Time Capability Loading and Pattern Updates**
|
||
|
|
|
||
|
|
The notification hook transforms the SuperClaude framework from a static documentation loader into a dynamic, intelligent system that loads capabilities precisely when needed. Key purposes include:
|
||
|
|
|
||
|
|
- **On-Demand Resource Loading**: Load MCP server documentation and patterns only when specific capabilities are required
|
||
|
|
- **Dynamic Pattern Updates**: Update framework patterns in real-time based on operation context and usage effectiveness
|
||
|
|
- **Intelligence Caching**: Implement performance-optimized caching strategies to minimize repeated loading overhead
|
||
|
|
- **Real-Time Learning**: Adapt framework behavior based on notification patterns and operational effectiveness
|
||
|
|
- **Context Optimization**: Reduce framework context overhead by 90% through selective, just-in-time loading
|
||
|
|
|
||
|
|
## Execution Context
|
||
|
|
|
||
|
|
### When This Hook Runs
|
||
|
|
|
||
|
|
The notification hook executes on **notification events** from Claude Code, specifically:
|
||
|
|
|
||
|
|
#### Primary Triggers
|
||
|
|
- **Tool Request Notifications**: When Claude Code requests specific tools or capabilities
|
||
|
|
- **Context Change Notifications**: When the operational context shifts (project type, complexity, domain)
|
||
|
|
- **Performance Issue Notifications**: When resource constraints or performance issues are detected
|
||
|
|
- **Error/Failure Notifications**: When operations fail and recovery intelligence is needed
|
||
|
|
- **Operation Start/Complete Notifications**: When major operations begin or conclude
|
||
|
|
|
||
|
|
#### Notification Types Processed
|
||
|
|
```yaml
|
||
|
|
high_priority:
|
||
|
|
- error # System errors requiring immediate intelligence loading
|
||
|
|
- failure # Operation failures needing recovery patterns
|
||
|
|
- security_alert # Security issues requiring specialized documentation
|
||
|
|
- performance_issue # Performance problems needing optimization patterns
|
||
|
|
- validation_failure # Validation errors requiring compliance patterns
|
||
|
|
|
||
|
|
medium_priority:
|
||
|
|
- tool_request # Tool usage requiring MCP documentation
|
||
|
|
- context_change # Context shifts requiring pattern updates
|
||
|
|
- resource_constraint # Resource limitations requiring optimization
|
||
|
|
|
||
|
|
low_priority:
|
||
|
|
- info # Informational notifications
|
||
|
|
- debug # Debug notifications
|
||
|
|
- status_update # Status change notifications
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Integration Points
|
||
|
|
- **Pre-Tool Use Hook**: Coordinates with tool selection intelligence
|
||
|
|
- **Session Start Hook**: Integrates with project context initialization
|
||
|
|
- **Post-Tool Use Hook**: Shares learning data for effectiveness measurement
|
||
|
|
- **Stop Hook**: Contributes to session analytics and learning consolidation
|
||
|
|
|
||
|
|
## Performance Target
|
||
|
|
|
||
|
|
**Target: <100ms execution time**
|
||
|
|
|
||
|
|
The notification hook is designed for ultra-fast execution to maintain Claude Code's responsiveness:
|
||
|
|
|
||
|
|
### Performance Specifications
|
||
|
|
- **Primary Target**: 95% of notifications processed in <100ms
|
||
|
|
- **Cache Hit Target**: >80% cache hit rate for repeated documentation requests
|
||
|
|
- **Memory Efficiency**: <50KB memory footprint per notification
|
||
|
|
- **CPU Efficiency**: <10% CPU utilization during peak notification processing
|
||
|
|
|
||
|
|
### Performance Monitoring
|
||
|
|
```python
|
||
|
|
performance_metrics = {
|
||
|
|
'processing_time_ms': execution_time,
|
||
|
|
'target_met': execution_time < 100, # Target compliance
|
||
|
|
'cache_hit_rate': cache_hits / total_requests,
|
||
|
|
'memory_usage_kb': memory_footprint,
|
||
|
|
'cpu_utilization_percent': cpu_usage
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
### Performance Optimization Strategies
|
||
|
|
- **Intelligent Caching**: Multi-tier caching with different retention periods
|
||
|
|
- **Lazy Loading**: Load only essential information during notification processing
|
||
|
|
- **Batch Processing**: Group related intelligence updates for efficiency
|
||
|
|
- **Asynchronous Operations**: Non-blocking processing for low-priority notifications
|
||
|
|
|
||
|
|
## Just-in-Time Loading
|
||
|
|
|
||
|
|
### Core Philosophy
|
||
|
|
|
||
|
|
Instead of loading all MCP server documentation upfront (traditional approach consuming 40-60KB context), the notification hook implements **demand-driven intelligence loading**:
|
||
|
|
|
||
|
|
```
|
||
|
|
Traditional Approach: JIT Approach:
|
||
|
|
┌─────────────────┐ ┌──────────────────┐
|
||
|
|
│ Load ALL docs │ │ Detect need │
|
||
|
|
│ (60KB) │ → │ Load specific │
|
||
|
|
│ │ │ (8-12KB) │
|
||
|
|
│ 90% unused │ │ Cache for reuse │
|
||
|
|
└─────────────────┘ └──────────────────┘
|
||
|
|
```
|
||
|
|
|
||
|
|
### JIT Loading Process
|
||
|
|
|
||
|
|
#### 1. Intelligence Need Detection
|
||
|
|
```python
|
||
|
|
def _analyze_intelligence_needs(self, context: dict) -> dict:
|
||
|
|
needs = {
|
||
|
|
'mcp_docs_needed': False,
|
||
|
|
'mcp_servers': [],
|
||
|
|
'reason': ''
|
||
|
|
}
|
||
|
|
|
||
|
|
# Detect specific capability requirements
|
||
|
|
if context.get('tool_requests'):
|
||
|
|
needs['mcp_docs_needed'] = True
|
||
|
|
needs['mcp_servers'] = self._map_tools_to_servers(tools)
|
||
|
|
needs['reason'] = 'Tool requests detected'
|
||
|
|
```
|
||
|
|
|
||
|
|
#### 2. Dynamic Documentation Loading
|
||
|
|
```python
|
||
|
|
def _load_jit_documentation(self, context: dict, analysis: dict) -> dict:
|
||
|
|
for doc_type in analysis.get('documentation_needed', []):
|
||
|
|
# Check cache first (30min retention)
|
||
|
|
if doc_type in self.notification_cache:
|
||
|
|
return cached_content
|
||
|
|
|
||
|
|
# Load on-demand (8-12KB typical)
|
||
|
|
doc_content = self._load_documentation_content(doc_type, context)
|
||
|
|
self.notification_cache[doc_type] = doc_content
|
||
|
|
|
||
|
|
return fresh_content
|
||
|
|
```
|
||
|
|
|
||
|
|
#### 3. Context-Aware Loading
|
||
|
|
The hook analyzes notification context to determine exactly what intelligence is needed:
|
||
|
|
|
||
|
|
```yaml
|
||
|
|
ui_component_request:
|
||
|
|
loads: magic_patterns (UI components, design systems, accessibility)
|
||
|
|
size: ~10KB
|
||
|
|
cache_duration: 30min
|
||
|
|
|
||
|
|
library_integration_request:
|
||
|
|
loads: context7_patterns (framework usage, best practices, documentation)
|
||
|
|
size: ~12KB
|
||
|
|
cache_duration: 30min
|
||
|
|
|
||
|
|
complex_analysis_request:
|
||
|
|
loads: sequential_patterns (reasoning workflows, debugging strategies)
|
||
|
|
size: ~8KB
|
||
|
|
cache_duration: 60min
|
||
|
|
|
||
|
|
testing_request:
|
||
|
|
loads: playwright_patterns (testing strategies, automation, performance)
|
||
|
|
size: ~9KB
|
||
|
|
cache_duration: 30min
|
||
|
|
```
|
||
|
|
|
||
|
|
### Benefits of JIT Loading
|
||
|
|
|
||
|
|
#### Context Reduction
|
||
|
|
- **Traditional**: 60KB upfront documentation loading
|
||
|
|
- **JIT**: 8-12KB on-demand loading
|
||
|
|
- **Savings**: 80-90% context reduction
|
||
|
|
|
||
|
|
#### Performance Improvement
|
||
|
|
- **Faster Initialization**: No upfront documentation loading
|
||
|
|
- **Reduced Memory**: Only active capabilities consume memory
|
||
|
|
- **Better Caching**: Targeted caching of actually-used patterns
|
||
|
|
|
||
|
|
#### Adaptive Intelligence
|
||
|
|
- **Usage-Based**: Load documentation based on actual usage patterns
|
||
|
|
- **Context-Sensitive**: Load relevant patterns for current operation context
|
||
|
|
- **Learning-Driven**: Improve loading decisions based on effectiveness data
|
||
|
|
|
||
|
|
## Pattern Update Mechanism
|
||
|
|
|
||
|
|
### Dynamic Pattern Management
|
||
|
|
|
||
|
|
The notification hook implements real-time pattern updates based on operational context and effectiveness measurement:
|
||
|
|
|
||
|
|
#### 1. Pattern Detection
|
||
|
|
```python
|
||
|
|
def _update_patterns_if_needed(self, context: dict, intelligence_needs: dict) -> dict:
|
||
|
|
pattern_updates = {
|
||
|
|
'updated_patterns': [],
|
||
|
|
'new_patterns_detected': [],
|
||
|
|
'pattern_effectiveness': {}
|
||
|
|
}
|
||
|
|
|
||
|
|
# Update operation-specific patterns
|
||
|
|
operation_type = context.get('operation_type')
|
||
|
|
self._update_operation_patterns(operation_type, pattern_updates)
|
||
|
|
|
||
|
|
# Update context-specific patterns
|
||
|
|
session_context = context.get('session_context', {})
|
||
|
|
self._update_context_patterns(session_context, pattern_updates)
|
||
|
|
```
|
||
|
|
|
||
|
|
#### 2. Pattern Types Updated
|
||
|
|
|
||
|
|
**Operation Patterns**
|
||
|
|
```yaml
|
||
|
|
build_operations:
|
||
|
|
patterns: [dependency_resolution, build_optimization, error_handling]
|
||
|
|
update_trigger: build/implement notifications
|
||
|
|
effectiveness_metric: build_success_rate
|
||
|
|
|
||
|
|
analysis_operations:
|
||
|
|
patterns: [systematic_investigation, hypothesis_testing, validation]
|
||
|
|
update_trigger: analyze/debug notifications
|
||
|
|
effectiveness_metric: issue_resolution_rate
|
||
|
|
|
||
|
|
testing_operations:
|
||
|
|
patterns: [test_generation, coverage_analysis, performance_testing]
|
||
|
|
update_trigger: test/validate notifications
|
||
|
|
effectiveness_metric: test_effectiveness_score
|
||
|
|
```
|
||
|
|
|
||
|
|
**Context Patterns**
|
||
|
|
```yaml
|
||
|
|
frontend_context:
|
||
|
|
patterns: [ui_components, responsive_design, accessibility_compliance]
|
||
|
|
update_trigger: frontend_project_detection
|
||
|
|
effectiveness_metric: ui_quality_score
|
||
|
|
|
||
|
|
backend_context:
|
||
|
|
patterns: [api_design, database_optimization, security_patterns]
|
||
|
|
update_trigger: backend_project_detection
|
||
|
|
effectiveness_metric: api_performance_score
|
||
|
|
|
||
|
|
fullstack_context:
|
||
|
|
patterns: [integration_patterns, deployment_strategies, monitoring]
|
||
|
|
update_trigger: fullstack_project_detection
|
||
|
|
effectiveness_metric: integration_success_rate
|
||
|
|
```
|
||
|
|
|
||
|
|
#### 3. Pattern Effectiveness Tracking
|
||
|
|
```python
|
||
|
|
def _record_pattern_effectiveness(self, pattern_type: str, context: dict, outcome: dict):
|
||
|
|
effectiveness_data = {
|
||
|
|
'pattern_type': pattern_type,
|
||
|
|
'usage_context': context,
|
||
|
|
'outcome_quality': outcome.get('quality_score', 0.0),
|
||
|
|
'performance_impact': outcome.get('performance_delta', 0.0),
|
||
|
|
'user_satisfaction': outcome.get('user_rating', 0.0),
|
||
|
|
'timestamp': time.time()
|
||
|
|
}
|
||
|
|
|
||
|
|
self.learning_engine.record_pattern_effectiveness(effectiveness_data)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Pattern Update Process
|
||
|
|
|
||
|
|
#### 1. Trigger Detection
|
||
|
|
- **Context Change**: Project type, complexity, or domain shifts
|
||
|
|
- **Performance Issues**: Patterns not meeting effectiveness thresholds
|
||
|
|
- **Usage Patterns**: Frequently used patterns need optimization
|
||
|
|
- **Error Patterns**: Failed operations require pattern updates
|
||
|
|
|
||
|
|
#### 2. Pattern Analysis
|
||
|
|
- **Effectiveness Measurement**: Track pattern success rates and performance impact
|
||
|
|
- **Usage Frequency**: Identify most commonly used patterns for optimization
|
||
|
|
- **Context Relevance**: Ensure patterns match current operational context
|
||
|
|
- **Performance Impact**: Measure pattern loading and execution overhead
|
||
|
|
|
||
|
|
#### 3. Intelligent Updates
|
||
|
|
- **Selective Updates**: Only update patterns that need improvement
|
||
|
|
- **Context-Aware Updates**: Patterns updated based on current operational context
|
||
|
|
- **Performance-Optimized**: Updates prioritize high-impact, frequently-used patterns
|
||
|
|
- **Learning-Driven**: Updates based on accumulated effectiveness data
|
||
|
|
|
||
|
|
## Intelligence Caching
|
||
|
|
|
||
|
|
### Multi-Tier Caching Strategy
|
||
|
|
|
||
|
|
The notification hook implements sophisticated caching to minimize repeated loading overhead:
|
||
|
|
|
||
|
|
#### Cache Hierarchy
|
||
|
|
```yaml
|
||
|
|
L1_Cache: # In-memory, immediate access
|
||
|
|
retention: session_duration
|
||
|
|
capacity: 20_patterns
|
||
|
|
access_time: <1ms
|
||
|
|
use_case: active_patterns
|
||
|
|
|
||
|
|
L2_Cache: # Process cache, fast access
|
||
|
|
retention: 60_minutes
|
||
|
|
capacity: 100_patterns
|
||
|
|
access_time: <5ms
|
||
|
|
use_case: recently_used_patterns
|
||
|
|
|
||
|
|
L3_Cache: # Disk cache, persistent
|
||
|
|
retention: 24_hours
|
||
|
|
capacity: 500_patterns
|
||
|
|
access_time: <20ms
|
||
|
|
use_case: historical_patterns
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Caching Durations by Content Type
|
||
|
|
```yaml
|
||
|
|
documentation_cache:
|
||
|
|
duration: 30_minutes
|
||
|
|
reason: "Documentation changes infrequently, but needs periodic refresh"
|
||
|
|
invalidation: version_change_or_timeout
|
||
|
|
|
||
|
|
pattern_cache:
|
||
|
|
duration: 60_minutes
|
||
|
|
reason: "Patterns evolve slowly, benefit from longer retention"
|
||
|
|
invalidation: effectiveness_threshold_or_timeout
|
||
|
|
|
||
|
|
intelligence_cache:
|
||
|
|
duration: 15_minutes
|
||
|
|
reason: "Intelligence updates frequently, needs fresh data"
|
||
|
|
invalidation: context_change_or_timeout
|
||
|
|
|
||
|
|
framework_cache:
|
||
|
|
duration: 120_minutes
|
||
|
|
reason: "Framework patterns stable, infrequent updates"
|
||
|
|
invalidation: framework_version_change
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Cache Management
|
||
|
|
```python
|
||
|
|
class IntelligenceCache:
|
||
|
|
def __init__(self):
|
||
|
|
self.documentation_cache = {} # 30min retention
|
||
|
|
self.pattern_cache = {} # 60min retention
|
||
|
|
self.intelligence_cache = {} # 15min retention
|
||
|
|
self.framework_cache = {} # 120min retention
|
||
|
|
|
||
|
|
def get_cached_content(self, content_type: str, key: str) -> Optional[dict]:
|
||
|
|
cache = self._get_cache_for_type(content_type)
|
||
|
|
entry = cache.get(key)
|
||
|
|
|
||
|
|
if entry and not self._is_expired(entry):
|
||
|
|
self._record_cache_hit(content_type, key)
|
||
|
|
return entry['content']
|
||
|
|
|
||
|
|
self._record_cache_miss(content_type, key)
|
||
|
|
return None
|
||
|
|
|
||
|
|
def cache_content(self, content_type: str, key: str, content: dict):
|
||
|
|
cache = self._get_cache_for_type(content_type)
|
||
|
|
retention = self._get_retention_for_type(content_type)
|
||
|
|
|
||
|
|
cache[key] = {
|
||
|
|
'content': content,
|
||
|
|
'timestamp': time.time(),
|
||
|
|
'retention_seconds': retention,
|
||
|
|
'access_count': 0
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Cache Performance Optimization
|
||
|
|
|
||
|
|
**Intelligent Prefetching**
|
||
|
|
```python
|
||
|
|
def _prefetch_likely_patterns(self, context: dict):
|
||
|
|
"""Prefetch patterns likely to be needed based on context."""
|
||
|
|
project_type = context.get('session_context', {}).get('project_type')
|
||
|
|
|
||
|
|
if project_type == 'frontend':
|
||
|
|
self._prefetch_patterns(['magic_patterns', 'ui_optimization'])
|
||
|
|
elif project_type == 'backend':
|
||
|
|
self._prefetch_patterns(['context7_patterns', 'api_optimization'])
|
||
|
|
```
|
||
|
|
|
||
|
|
**Cache Eviction Strategy**
|
||
|
|
```python
|
||
|
|
def _evict_least_effective_patterns(self):
|
||
|
|
"""Evict patterns with lowest effectiveness scores."""
|
||
|
|
for cache in [self.documentation_cache, self.pattern_cache]:
|
||
|
|
if len(cache) > self.max_cache_size:
|
||
|
|
# Sort by effectiveness score and access frequency
|
||
|
|
sorted_entries = sorted(cache.items(),
|
||
|
|
key=lambda x: (x[1].get('effectiveness', 0.0),
|
||
|
|
x[1].get('access_count', 0)))
|
||
|
|
|
||
|
|
# Evict bottom 20%
|
||
|
|
evict_count = len(cache) // 5
|
||
|
|
for key, _ in sorted_entries[:evict_count]:
|
||
|
|
del cache[key]
|
||
|
|
```
|
||
|
|
|
||
|
|
## Configuration
|
||
|
|
|
||
|
|
### Configuration Sources
|
||
|
|
|
||
|
|
The notification hook reads configuration from multiple sources with priority hierarchy:
|
||
|
|
|
||
|
|
#### 1. superclaude-config.json (Primary)
|
||
|
|
```json
|
||
|
|
{
|
||
|
|
"hook_configurations": {
|
||
|
|
"notification": {
|
||
|
|
"enabled": true,
|
||
|
|
"description": "Just-in-time MCP documentation loading and pattern updates",
|
||
|
|
"performance_target_ms": 100,
|
||
|
|
"features": [
|
||
|
|
"just_in_time_documentation_loading",
|
||
|
|
"dynamic_pattern_updates",
|
||
|
|
"framework_intelligence_updates",
|
||
|
|
"real_time_learning",
|
||
|
|
"performance_optimization_through_caching"
|
||
|
|
],
|
||
|
|
"configuration": {
|
||
|
|
"jit_documentation_loading": true,
|
||
|
|
"pattern_updates": true,
|
||
|
|
"intelligence_caching": true,
|
||
|
|
"learning_integration": true,
|
||
|
|
"performance_optimization": true
|
||
|
|
},
|
||
|
|
"caching": {
|
||
|
|
"documentation_cache_minutes": 30,
|
||
|
|
"pattern_cache_minutes": 60,
|
||
|
|
"intelligence_cache_minutes": 15
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
#### 2. YAML Configuration Files (Secondary)
|
||
|
|
```yaml
|
||
|
|
# config/session.yaml - Session-specific notification settings
|
||
|
|
notifications:
|
||
|
|
enabled: true
|
||
|
|
priority_processing: true
|
||
|
|
batch_processing: false
|
||
|
|
async_processing: true
|
||
|
|
|
||
|
|
# config/performance.yaml - Performance targets
|
||
|
|
performance:
|
||
|
|
notification_hook:
|
||
|
|
target_ms: 100
|
||
|
|
cache_hit_target: 0.80
|
||
|
|
memory_limit_kb: 50
|
||
|
|
cpu_limit_percent: 10
|
||
|
|
```
|
||
|
|
|
||
|
|
#### 3. Environment Variables (Override)
|
||
|
|
```bash
|
||
|
|
SUPERCLAUDE_NOTIFICATION_ENABLED=true
|
||
|
|
SUPERCLAUDE_NOTIFICATION_PERFORMANCE_TARGET=100
|
||
|
|
SUPERCLAUDE_NOTIFICATION_CACHE_DURATION=30
|
||
|
|
SUPERCLAUDE_NOTIFICATION_LEARNING_ENABLED=true
|
||
|
|
```
|
||
|
|
|
||
|
|
### Configuration Loading
|
||
|
|
```python
|
||
|
|
def __init__(self):
|
||
|
|
# Load hook-specific configuration
|
||
|
|
self.hook_config = config_loader.get_hook_config('notification')
|
||
|
|
|
||
|
|
# Load notification configuration from session.yaml
|
||
|
|
self.notification_config = config_loader.get_section('session', 'notifications', {})
|
||
|
|
|
||
|
|
# Performance settings with fallback
|
||
|
|
self.performance_target_ms = config_loader.get_hook_config(
|
||
|
|
'notification', 'performance_target_ms', 100
|
||
|
|
)
|
||
|
|
|
||
|
|
# Caching configuration
|
||
|
|
self.cache_config = self.hook_config.get('caching', {})
|
||
|
|
self.doc_cache_minutes = self.cache_config.get('documentation_cache_minutes', 30)
|
||
|
|
self.pattern_cache_minutes = self.cache_config.get('pattern_cache_minutes', 60)
|
||
|
|
self.intelligence_cache_minutes = self.cache_config.get('intelligence_cache_minutes', 15)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Runtime Configuration Adaptation
|
||
|
|
```python
|
||
|
|
def _adapt_configuration_to_context(self, context: dict):
|
||
|
|
"""Adapt configuration based on runtime context."""
|
||
|
|
resource_usage = context.get('session_context', {}).get('resource_usage', 0)
|
||
|
|
|
||
|
|
# Adjust caching for resource-constrained scenarios
|
||
|
|
if resource_usage > 75:
|
||
|
|
self.doc_cache_minutes = min(self.doc_cache_minutes, 15) # Reduce cache retention
|
||
|
|
self.performance_target_ms = 50 # Tighter performance target
|
||
|
|
|
||
|
|
# Adjust for high-priority notifications
|
||
|
|
if context.get('priority') == 'high':
|
||
|
|
self.performance_target_ms = 50 # Faster processing for critical notifications
|
||
|
|
```
|
||
|
|
|
||
|
|
## Dynamic Pattern Types
|
||
|
|
|
||
|
|
### MCP Activation Patterns
|
||
|
|
|
||
|
|
The notification hook manages dynamic patterns for MCP server activation based on notification context:
|
||
|
|
|
||
|
|
#### Magic Patterns (UI/Component Generation)
|
||
|
|
```yaml
|
||
|
|
activation_triggers:
|
||
|
|
- ui_component_requests
|
||
|
|
- design_system_queries
|
||
|
|
- accessibility_requirements
|
||
|
|
- responsive_design_needs
|
||
|
|
|
||
|
|
loaded_patterns:
|
||
|
|
ui_components: [button, form, modal, card, navigation, layout]
|
||
|
|
design_systems: [theme_tokens, spacing_system, color_palette, typography]
|
||
|
|
accessibility: [aria_labels, keyboard_navigation, screen_readers, contrast]
|
||
|
|
responsive: [breakpoints, fluid_layouts, mobile_first, touch_interfaces]
|
||
|
|
|
||
|
|
cache_strategy:
|
||
|
|
duration: 30_minutes
|
||
|
|
invalidation: design_system_updates
|
||
|
|
prefetch: project_type_frontend
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Context7 Patterns (Library/Framework Documentation)
|
||
|
|
```yaml
|
||
|
|
activation_triggers:
|
||
|
|
- library_integration_requests
|
||
|
|
- framework_usage_queries
|
||
|
|
- documentation_access_needs
|
||
|
|
- best_practices_requirements
|
||
|
|
|
||
|
|
loaded_patterns:
|
||
|
|
library_integration: [import_patterns, configuration_management, version_compatibility]
|
||
|
|
framework_usage: [react_hooks, vue_composition, angular_services, node_modules]
|
||
|
|
documentation_access: [api_references, code_examples, migration_guides]
|
||
|
|
best_practices: [coding_standards, security_patterns, performance_optimization]
|
||
|
|
|
||
|
|
cache_strategy:
|
||
|
|
duration: 60_minutes
|
||
|
|
invalidation: library_version_updates
|
||
|
|
prefetch: dependency_analysis
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Sequential Patterns (Complex Analysis)
|
||
|
|
```yaml
|
||
|
|
activation_triggers:
|
||
|
|
- complex_analysis_requests
|
||
|
|
- debugging_scenarios
|
||
|
|
- systematic_investigation_needs
|
||
|
|
- multi_step_reasoning_requirements
|
||
|
|
|
||
|
|
loaded_patterns:
|
||
|
|
analysis_workflows: [hypothesis_formation, evidence_gathering, validation_cycles]
|
||
|
|
debugging_strategies: [systematic_investigation, root_cause_analysis, verification]
|
||
|
|
reasoning_patterns: [decomposition_strategies, synthesis_methods, optimization_approaches]
|
||
|
|
problem_solving: [constraint_identification, solution_generation, trade_off_analysis]
|
||
|
|
|
||
|
|
cache_strategy:
|
||
|
|
duration: 45_minutes
|
||
|
|
invalidation: analysis_method_updates
|
||
|
|
prefetch: complexity_indicators
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Playwright Patterns (Testing/Automation)
|
||
|
|
```yaml
|
||
|
|
activation_triggers:
|
||
|
|
- testing_requests
|
||
|
|
- automation_needs
|
||
|
|
- performance_testing_requirements
|
||
|
|
- cross_browser_validation_needs
|
||
|
|
|
||
|
|
loaded_patterns:
|
||
|
|
testing_strategies: [unit_testing, integration_testing, e2e_testing, visual_testing]
|
||
|
|
automation_patterns: [page_objects, test_data_management, assertion_strategies]
|
||
|
|
performance_testing: [load_testing, stress_testing, performance_monitoring]
|
||
|
|
browser_automation: [element_selection, event_simulation, state_management]
|
||
|
|
|
||
|
|
cache_strategy:
|
||
|
|
duration: 30_minutes
|
||
|
|
invalidation: testing_framework_updates
|
||
|
|
prefetch: testing_requirements_detection
|
||
|
|
```
|
||
|
|
|
||
|
|
### Mode Detection Patterns
|
||
|
|
|
||
|
|
Dynamic patterns for SuperClaude mode detection and activation:
|
||
|
|
|
||
|
|
#### Brainstorming Mode Patterns
|
||
|
|
```yaml
|
||
|
|
detection_triggers:
|
||
|
|
- vague_project_requests
|
||
|
|
- exploration_keywords
|
||
|
|
- uncertainty_indicators
|
||
|
|
- interactive_discovery_needs
|
||
|
|
|
||
|
|
loaded_patterns:
|
||
|
|
dialogue_patterns: [socratic_questioning, requirement_discovery, consensus_building]
|
||
|
|
exploration_strategies: [possibility_analysis, constraint_identification, solution_space_mapping]
|
||
|
|
decision_frameworks: [criteria_development, option_evaluation, consensus_formation]
|
||
|
|
|
||
|
|
activation_logic:
|
||
|
|
confidence_threshold: 0.7
|
||
|
|
keyword_matching: [brainstorm, explore, discuss, figure_out, not_sure]
|
||
|
|
context_analysis: project_ambiguity_detection
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Task Management Mode Patterns
|
||
|
|
```yaml
|
||
|
|
detection_triggers:
|
||
|
|
- multi_step_operations
|
||
|
|
- complex_project_requirements
|
||
|
|
- delegation_opportunities
|
||
|
|
- orchestration_needs
|
||
|
|
|
||
|
|
loaded_patterns:
|
||
|
|
orchestration_strategies: [wave_coordination, sub_agent_delegation, parallel_processing]
|
||
|
|
task_decomposition: [epic_breakdown, story_mapping, dependency_analysis]
|
||
|
|
resource_management: [capacity_planning, load_balancing, optimization_strategies]
|
||
|
|
|
||
|
|
activation_logic:
|
||
|
|
complexity_threshold: 0.4
|
||
|
|
file_count_threshold: 3
|
||
|
|
operation_type_diversity: multiple_domains
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Token Efficiency Mode Patterns
|
||
|
|
```yaml
|
||
|
|
detection_triggers:
|
||
|
|
- resource_constraints
|
||
|
|
- context_usage_high
|
||
|
|
- optimization_requests
|
||
|
|
- performance_requirements
|
||
|
|
|
||
|
|
loaded_patterns:
|
||
|
|
compression_strategies: [symbol_systems, abbreviation_frameworks, structural_optimization]
|
||
|
|
efficiency_techniques: [selective_compression, quality_preservation, adaptive_compression]
|
||
|
|
optimization_methods: [content_classification, priority_ranking, intelligent_caching]
|
||
|
|
|
||
|
|
activation_logic:
|
||
|
|
resource_usage_threshold: 0.75
|
||
|
|
context_size_threshold: large_scale_operations
|
||
|
|
optimization_request_detection: explicit_or_implicit
|
||
|
|
```
|
||
|
|
|
||
|
|
## Learning Integration
|
||
|
|
|
||
|
|
### Real-Time Learning and Adaptation
|
||
|
|
|
||
|
|
The notification hook implements continuous learning to optimize intelligence loading decisions:
|
||
|
|
|
||
|
|
#### Learning Event Types
|
||
|
|
```python
|
||
|
|
class LearningEventType(Enum):
|
||
|
|
PATTERN_EFFECTIVENESS = "pattern_effectiveness"
|
||
|
|
DOCUMENTATION_USAGE = "documentation_usage"
|
||
|
|
CACHE_PERFORMANCE = "cache_performance"
|
||
|
|
LOADING_OPTIMIZATION = "loading_optimization"
|
||
|
|
ERROR_RECOVERY = "error_recovery"
|
||
|
|
PERFORMANCE_OPTIMIZATION = "performance_optimization"
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Learning Data Collection
|
||
|
|
```python
|
||
|
|
def _record_notification_learning(self, context: dict, intelligence_analysis: dict):
|
||
|
|
"""Record learning events for continuous optimization."""
|
||
|
|
|
||
|
|
# Error pattern learning
|
||
|
|
if context['notification_type'] in ['error', 'failure']:
|
||
|
|
self.learning_engine.record_learning_event(
|
||
|
|
LearningType.ERROR_RECOVERY,
|
||
|
|
AdaptationScope.USER,
|
||
|
|
context,
|
||
|
|
{
|
||
|
|
'error_type': context.get('error_type'),
|
||
|
|
'recovery_strategy': intelligence_analysis.get('recovery_patterns'),
|
||
|
|
'intelligence_loaded': len(intelligence_analysis.get('documentation_needed', [])),
|
||
|
|
'recovery_success': context.get('recovery_outcome', False)
|
||
|
|
},
|
||
|
|
learning_value=0.7, # High value from error experiences
|
||
|
|
confidence=0.8,
|
||
|
|
metadata={'hook': 'notification', 'learning_type': 'error_recovery'}
|
||
|
|
)
|
||
|
|
|
||
|
|
# Success pattern learning
|
||
|
|
elif context['notification_type'] in ['success', 'completion']:
|
||
|
|
self.learning_engine.record_learning_event(
|
||
|
|
LearningType.OPERATION_PATTERN,
|
||
|
|
AdaptationScope.USER,
|
||
|
|
context,
|
||
|
|
{
|
||
|
|
'operation_type': context.get('operation_type'),
|
||
|
|
'patterns_used': intelligence_analysis.get('patterns_applied'),
|
||
|
|
'effectiveness_score': context.get('effectiveness_score', 0.0),
|
||
|
|
'performance_impact': context.get('performance_delta', 0.0)
|
||
|
|
},
|
||
|
|
learning_value=0.9, # Very high value from successful operations
|
||
|
|
confidence=0.9,
|
||
|
|
metadata={'hook': 'notification', 'learning_type': 'success_pattern'}
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Adaptive Intelligence Loading
|
||
|
|
```python
|
||
|
|
def _adapt_loading_strategy(self, context: dict, historical_data: dict) -> dict:
|
||
|
|
"""Adapt loading strategy based on learning data."""
|
||
|
|
|
||
|
|
# Analyze historical effectiveness
|
||
|
|
pattern_effectiveness = historical_data.get('pattern_effectiveness', {})
|
||
|
|
usage_frequency = historical_data.get('usage_frequency', {})
|
||
|
|
performance_impact = historical_data.get('performance_impact', {})
|
||
|
|
|
||
|
|
# Prioritize high-effectiveness, frequently-used patterns
|
||
|
|
loading_priority = {}
|
||
|
|
for pattern_type, effectiveness in pattern_effectiveness.items():
|
||
|
|
frequency = usage_frequency.get(pattern_type, 0.0)
|
||
|
|
performance = performance_impact.get(pattern_type, 1.0) # Lower is better
|
||
|
|
|
||
|
|
# Calculate composite priority score
|
||
|
|
priority_score = (effectiveness * 0.4) + (frequency * 0.4) + ((1.0 - performance) * 0.2)
|
||
|
|
loading_priority[pattern_type] = priority_score
|
||
|
|
|
||
|
|
# Adapt loading strategy
|
||
|
|
adaptation_strategy = {
|
||
|
|
'high_priority_patterns': [p for p, s in loading_priority.items() if s > 0.7],
|
||
|
|
'prefetch_patterns': [p for p, s in loading_priority.items() if s > 0.5],
|
||
|
|
'lazy_load_patterns': [p for p, s in loading_priority.items() if s < 0.3],
|
||
|
|
'cache_duration_adjustment': self._calculate_optimal_cache_duration(historical_data)
|
||
|
|
}
|
||
|
|
|
||
|
|
return adaptation_strategy
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Learning-Driven Optimization
|
||
|
|
```python
|
||
|
|
def _optimize_based_on_learning(self, learning_insights: dict):
|
||
|
|
"""Apply learning insights to optimize notification processing."""
|
||
|
|
|
||
|
|
# Optimize caching strategy
|
||
|
|
if learning_insights.get('cache_miss_rate_high'):
|
||
|
|
# Increase cache retention for frequently accessed patterns
|
||
|
|
self.doc_cache_minutes *= 1.5
|
||
|
|
self.pattern_cache_minutes *= 1.2
|
||
|
|
|
||
|
|
# Optimize loading strategy
|
||
|
|
if learning_insights.get('loading_overhead_high'):
|
||
|
|
# Implement more aggressive prefetching
|
||
|
|
self.prefetch_threshold = 0.3 # Lower threshold for prefetching
|
||
|
|
|
||
|
|
# Optimize pattern selection
|
||
|
|
if learning_insights.get('pattern_effectiveness_low'):
|
||
|
|
# Focus on high-effectiveness patterns
|
||
|
|
self.effectiveness_threshold = 0.7 # Higher threshold for pattern loading
|
||
|
|
```
|
||
|
|
|
||
|
|
### Cross-Session Learning
|
||
|
|
|
||
|
|
#### Learning Data Persistence
|
||
|
|
```python
|
||
|
|
def _persist_learning_insights(self, session_id: str, insights: dict):
|
||
|
|
"""Persist learning insights across sessions."""
|
||
|
|
learning_record = {
|
||
|
|
'session_id': session_id,
|
||
|
|
'timestamp': time.time(),
|
||
|
|
'notification_patterns': insights.get('notification_patterns', {}),
|
||
|
|
'loading_effectiveness': insights.get('loading_effectiveness', {}),
|
||
|
|
'cache_performance': insights.get('cache_performance', {}),
|
||
|
|
'optimization_opportunities': insights.get('optimization_opportunities', [])
|
||
|
|
}
|
||
|
|
|
||
|
|
self.learning_engine.persist_cross_session_learning(learning_record)
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Learning Application
|
||
|
|
```python
|
||
|
|
def _apply_cross_session_learning(self, session_context: dict) -> dict:
|
||
|
|
"""Apply learning from previous sessions."""
|
||
|
|
historical_learning = self.learning_engine.get_historical_learning(
|
||
|
|
session_context.get('project_type'),
|
||
|
|
session_context.get('user_context', {})
|
||
|
|
)
|
||
|
|
|
||
|
|
# Apply learned optimizations
|
||
|
|
optimizations = {
|
||
|
|
'preferred_patterns': historical_learning.get('high_effectiveness_patterns', []),
|
||
|
|
'cache_strategy': historical_learning.get('optimal_cache_durations', {}),
|
||
|
|
'loading_strategy': historical_learning.get('optimal_loading_sequence', []),
|
||
|
|
'performance_tuning': historical_learning.get('performance_optimizations', {})
|
||
|
|
}
|
||
|
|
|
||
|
|
return optimizations
|
||
|
|
```
|
||
|
|
|
||
|
|
## Performance Optimization
|
||
|
|
|
||
|
|
### Caching Strategies
|
||
|
|
|
||
|
|
#### Multi-Level Caching Architecture
|
||
|
|
```python
|
||
|
|
class PerformanceOptimizedCache:
|
||
|
|
def __init__(self):
|
||
|
|
# L1: In-memory hot cache (immediate access)
|
||
|
|
self.hot_cache = {} # Most frequently accessed patterns
|
||
|
|
self.hot_cache_max_size = 20
|
||
|
|
|
||
|
|
# L2: In-memory warm cache (fast access)
|
||
|
|
self.warm_cache = {} # Recently accessed patterns
|
||
|
|
self.warm_cache_max_size = 100
|
||
|
|
|
||
|
|
# L3: Persistent cold cache (disk-based)
|
||
|
|
self.cold_cache_path = Path("cache/notification_patterns")
|
||
|
|
|
||
|
|
# Cache performance metrics
|
||
|
|
self.cache_metrics = {
|
||
|
|
'l1_hits': 0, 'l1_misses': 0,
|
||
|
|
'l2_hits': 0, 'l2_misses': 0,
|
||
|
|
'l3_hits': 0, 'l3_misses': 0,
|
||
|
|
'total_requests': 0
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Intelligent Cache Management
|
||
|
|
```python
|
||
|
|
def _optimize_cache_allocation(self):
|
||
|
|
"""Optimize cache allocation based on usage patterns."""
|
||
|
|
|
||
|
|
# Promote frequently accessed patterns to hot cache
|
||
|
|
access_frequency = self._calculate_access_frequency()
|
||
|
|
for pattern_id, frequency in access_frequency.items():
|
||
|
|
if frequency > self.hot_cache_threshold:
|
||
|
|
self._promote_to_hot_cache(pattern_id)
|
||
|
|
|
||
|
|
# Demote rarely accessed patterns
|
||
|
|
for pattern_id, last_access in self._get_last_access_times().items():
|
||
|
|
if time.time() - last_access > self.cold_cache_threshold:
|
||
|
|
self._demote_to_cold_cache(pattern_id)
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Cache Performance Monitoring
|
||
|
|
```python
|
||
|
|
def _monitor_cache_performance(self) -> dict:
|
||
|
|
"""Monitor and report cache performance metrics."""
|
||
|
|
total_requests = self.cache_metrics['total_requests']
|
||
|
|
if total_requests == 0:
|
||
|
|
return {'cache_hit_rate': 0.0, 'performance_score': 0.0}
|
||
|
|
|
||
|
|
l1_hit_rate = self.cache_metrics['l1_hits'] / total_requests
|
||
|
|
l2_hit_rate = self.cache_metrics['l2_hits'] / total_requests
|
||
|
|
l3_hit_rate = self.cache_metrics['l3_hits'] / total_requests
|
||
|
|
|
||
|
|
# Calculate weighted performance score (L1 hits are most valuable)
|
||
|
|
performance_score = (l1_hit_rate * 1.0) + (l2_hit_rate * 0.7) + (l3_hit_rate * 0.3)
|
||
|
|
|
||
|
|
return {
|
||
|
|
'cache_hit_rate': l1_hit_rate + l2_hit_rate + l3_hit_rate,
|
||
|
|
'l1_hit_rate': l1_hit_rate,
|
||
|
|
'l2_hit_rate': l2_hit_rate,
|
||
|
|
'l3_hit_rate': l3_hit_rate,
|
||
|
|
'performance_score': performance_score,
|
||
|
|
'optimization_needed': performance_score < 0.6
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
### Timing Optimization
|
||
|
|
|
||
|
|
#### Execution Time Profiling
|
||
|
|
```python
|
||
|
|
def _profile_execution_timing(self, func, *args, **kwargs):
|
||
|
|
"""Profile function execution time with detailed breakdown."""
|
||
|
|
start_time = time.perf_counter()
|
||
|
|
|
||
|
|
# Profile individual components
|
||
|
|
component_timings = {}
|
||
|
|
|
||
|
|
# Intelligence analysis timing
|
||
|
|
analysis_start = time.perf_counter()
|
||
|
|
intelligence_analysis = self._analyze_intelligence_opportunities(*args)
|
||
|
|
component_timings['intelligence_analysis'] = (time.perf_counter() - analysis_start) * 1000
|
||
|
|
|
||
|
|
# Documentation loading timing
|
||
|
|
loading_start = time.perf_counter()
|
||
|
|
documentation_updates = self._load_jit_documentation(*args, intelligence_analysis)
|
||
|
|
component_timings['documentation_loading'] = (time.perf_counter() - loading_start) * 1000
|
||
|
|
|
||
|
|
# Pattern update timing
|
||
|
|
pattern_start = time.perf_counter()
|
||
|
|
pattern_updates = self._update_patterns_if_needed(*args)
|
||
|
|
component_timings['pattern_updates'] = (time.perf_counter() - pattern_start) * 1000
|
||
|
|
|
||
|
|
total_time = (time.perf_counter() - start_time) * 1000
|
||
|
|
|
||
|
|
return {
|
||
|
|
'total_time_ms': total_time,
|
||
|
|
'component_timings': component_timings,
|
||
|
|
'target_met': total_time < self.performance_target_ms,
|
||
|
|
'performance_ratio': total_time / self.performance_target_ms
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Performance Optimization Strategies
|
||
|
|
```python
|
||
|
|
def _apply_performance_optimizations(self, performance_data: dict):
|
||
|
|
"""Apply performance optimizations based on profiling data."""
|
||
|
|
|
||
|
|
# Identify performance bottlenecks
|
||
|
|
component_timings = performance_data.get('component_timings', {})
|
||
|
|
bottleneck_threshold = self.performance_target_ms * 0.4 # 40% of total budget
|
||
|
|
|
||
|
|
for component, timing in component_timings.items():
|
||
|
|
if timing > bottleneck_threshold:
|
||
|
|
self._optimize_component_performance(component, timing)
|
||
|
|
|
||
|
|
# Apply global optimizations
|
||
|
|
if performance_data.get('total_time_ms', 0) > self.performance_target_ms:
|
||
|
|
self._apply_emergency_optimizations()
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Emergency Performance Mode
|
||
|
|
```python
|
||
|
|
def _apply_emergency_optimizations(self):
|
||
|
|
"""Apply emergency optimizations when performance targets are missed."""
|
||
|
|
|
||
|
|
# Reduce cache retention to free memory
|
||
|
|
self.doc_cache_minutes = min(self.doc_cache_minutes, 10)
|
||
|
|
self.pattern_cache_minutes = min(self.pattern_cache_minutes, 20)
|
||
|
|
|
||
|
|
# Limit concurrent operations
|
||
|
|
self.max_concurrent_loads = 2
|
||
|
|
|
||
|
|
# Skip non-essential processing
|
||
|
|
self.skip_learning_updates = True
|
||
|
|
self.skip_pattern_effectiveness_tracking = True
|
||
|
|
|
||
|
|
# Enable aggressive caching
|
||
|
|
self.aggressive_caching_enabled = True
|
||
|
|
|
||
|
|
# Log performance degradation
|
||
|
|
log_decision(
|
||
|
|
"notification",
|
||
|
|
"emergency_optimization",
|
||
|
|
"performance_target_exceeded",
|
||
|
|
f"Applying emergency optimizations: target={self.performance_target_ms}ms"
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Resource Management
|
||
|
|
|
||
|
|
#### Memory Optimization
|
||
|
|
```python
|
||
|
|
def _optimize_memory_usage(self):
|
||
|
|
"""Optimize memory usage for notification processing."""
|
||
|
|
|
||
|
|
# Limit cache size based on available memory
|
||
|
|
available_memory = self._get_available_memory_mb()
|
||
|
|
if available_memory < 100: # Less than 100MB available
|
||
|
|
self.hot_cache_max_size = min(self.hot_cache_max_size, 10)
|
||
|
|
self.warm_cache_max_size = min(self.warm_cache_max_size, 50)
|
||
|
|
|
||
|
|
# Implement aggressive garbage collection for cached patterns
|
||
|
|
if len(self.notification_cache) > self.cache_size_limit:
|
||
|
|
self._evict_least_recently_used_patterns()
|
||
|
|
|
||
|
|
# Compress cached data for memory efficiency
|
||
|
|
for cache_key, cache_data in self.notification_cache.items():
|
||
|
|
if not cache_data.get('compressed', False):
|
||
|
|
self.notification_cache[cache_key] = self._compress_cache_data(cache_data)
|
||
|
|
```
|
||
|
|
|
||
|
|
#### CPU Optimization
|
||
|
|
```python
|
||
|
|
def _optimize_cpu_usage(self):
|
||
|
|
"""Optimize CPU usage during notification processing."""
|
||
|
|
|
||
|
|
# Implement lazy evaluation for non-critical operations
|
||
|
|
self.lazy_evaluation_enabled = True
|
||
|
|
|
||
|
|
# Use CPU-efficient algorithms for pattern matching
|
||
|
|
self.pattern_matching_algorithm = 'bloom_filter' # Instead of linear search
|
||
|
|
|
||
|
|
# Batch similar operations to reduce overhead
|
||
|
|
self.operation_batching_enabled = True
|
||
|
|
|
||
|
|
# Limit concurrent processing based on CPU availability
|
||
|
|
cpu_cores = os.cpu_count()
|
||
|
|
self.max_concurrent_operations = min(cpu_cores // 2, 4)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Monitoring and Alerting
|
||
|
|
|
||
|
|
#### Performance Monitoring
|
||
|
|
```python
|
||
|
|
def _monitor_performance_metrics(self) -> dict:
|
||
|
|
"""Continuously monitor performance metrics."""
|
||
|
|
return {
|
||
|
|
'processing_time_ms': self._get_average_processing_time(),
|
||
|
|
'cache_hit_rate': self._calculate_cache_hit_rate(),
|
||
|
|
'memory_usage_mb': self._get_memory_usage(),
|
||
|
|
'cpu_utilization_percent': self._get_cpu_utilization(),
|
||
|
|
'throughput_notifications_per_second': self._calculate_throughput(),
|
||
|
|
'error_rate_percent': self._calculate_error_rate(),
|
||
|
|
'target_compliance_rate': self._calculate_target_compliance()
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Performance Alerting
|
||
|
|
```python
|
||
|
|
def _check_performance_alerts(self, metrics: dict):
|
||
|
|
"""Check performance metrics against thresholds and generate alerts."""
|
||
|
|
|
||
|
|
alerts = []
|
||
|
|
|
||
|
|
# Processing time alert
|
||
|
|
if metrics['processing_time_ms'] > self.performance_target_ms * 1.5:
|
||
|
|
alerts.append({
|
||
|
|
'type': 'performance_degradation',
|
||
|
|
'severity': 'high',
|
||
|
|
'message': f"Processing time {metrics['processing_time_ms']}ms exceeds target",
|
||
|
|
'recommended_action': 'apply_emergency_optimizations'
|
||
|
|
})
|
||
|
|
|
||
|
|
# Cache performance alert
|
||
|
|
if metrics['cache_hit_rate'] < 0.6:
|
||
|
|
alerts.append({
|
||
|
|
'type': 'cache_performance_low',
|
||
|
|
'severity': 'medium',
|
||
|
|
'message': f"Cache hit rate {metrics['cache_hit_rate']:.2%} below optimal",
|
||
|
|
'recommended_action': 'optimize_cache_strategy'
|
||
|
|
})
|
||
|
|
|
||
|
|
# Memory usage alert
|
||
|
|
if metrics['memory_usage_mb'] > 50:
|
||
|
|
alerts.append({
|
||
|
|
'type': 'memory_usage_high',
|
||
|
|
'severity': 'medium',
|
||
|
|
'message': f"Memory usage {metrics['memory_usage_mb']}MB exceeds target",
|
||
|
|
'recommended_action': 'reduce_cache_size'
|
||
|
|
})
|
||
|
|
|
||
|
|
return alerts
|
||
|
|
```
|
||
|
|
|
||
|
|
## Integration Points
|
||
|
|
|
||
|
|
### Framework Integration
|
||
|
|
- **SuperClaude-Lite Framework**: Core component providing just-in-time intelligence loading
|
||
|
|
- **Hook Coordination**: Works with session_start, pre_tool_use, post_tool_use, and stop hooks
|
||
|
|
- **MCP Server Integration**: Coordinates with Context7, Sequential, Magic, Playwright, Morphllm, and Serena
|
||
|
|
- **Quality Gates**: Contributes to validation steps through intelligence loading and pattern updates
|
||
|
|
|
||
|
|
### Performance Integration
|
||
|
|
- **Real-Time Monitoring**: Integrates with framework performance monitoring system
|
||
|
|
- **Learning System**: Contributes to cross-hook learning and adaptation
|
||
|
|
- **Resource Management**: Coordinates with global resource management and optimization
|
||
|
|
- **Error Handling**: Implements graceful degradation and fallback strategies
|
||
|
|
|
||
|
|
### Data Flow Integration
|
||
|
|
- **Input**: Notification events from Claude Code with operation context
|
||
|
|
- **Processing**: Just-in-time intelligence loading, pattern updates, caching optimization
|
||
|
|
- **Output**: Enhanced notification responses with loaded intelligence and framework updates
|
||
|
|
- **Learning**: Continuous learning data for optimization and adaptation
|
||
|
|
|
||
|
|
## Related Documentation
|
||
|
|
|
||
|
|
- **Hook System Overview**: `docs/Overview.md` - Complete hook system architecture
|
||
|
|
- **Configuration Guide**: `docs/Configuration/` - Configuration management and customization
|
||
|
|
- **Performance Monitoring**: `docs/Modules/performance_monitor.md` - Performance tracking and optimization
|
||
|
|
- **Learning Engine**: `docs/Modules/learning_engine.md` - Learning system integration and adaptation
|
||
|
|
- **Pattern Detection**: `docs/Patterns/` - Dynamic pattern management and updates
|
||
|
|
|
||
|
|
## Conclusion
|
||
|
|
|
||
|
|
The notification hook represents a paradigm shift from traditional static documentation loading to intelligent, just-in-time capability provisioning. By reducing context usage by 90% while maintaining full framework intelligence, it enables the SuperClaude framework to operate efficiently at scale while providing adaptive, learning-driven optimization for maximum effectiveness.
|
||
|
|
|
||
|
|
Key benefits:
|
||
|
|
- **90% Context Reduction**: From 60KB upfront loading to 8-12KB on-demand loading
|
||
|
|
- **<100ms Performance**: Ultra-fast notification processing with intelligent caching
|
||
|
|
- **Adaptive Intelligence**: Learning-driven optimization based on usage patterns and effectiveness
|
||
|
|
- **Dynamic Patterns**: Real-time pattern updates based on operational context
|
||
|
|
- **Performance Optimization**: Multi-tier caching and resource management for optimal efficiency
|
||
|
|
|
||
|
|
The notification hook enables the SuperClaude framework to be both comprehensive and efficient, providing full capability access while maintaining optimal performance characteristics.
|