SuperClaude/docs/Development/pm-agent-improvements.md

150 lines
5.6 KiB
Markdown
Raw Normal View History

# PM Agent Improvement Implementation - 2025-10-14
## Implemented Improvements
### 1. Self-Correcting Execution (Root Cause First) ✅
**Core Change**: Never retry the same approach without understanding WHY it failed.
**Implementation**:
- 6-step error detection protocol
- Mandatory root cause investigation (context7, WebFetch, Grep, Read)
- Hypothesis formation before solution attempt
- Solution must be DIFFERENT from previous attempts
- Learning capture for future reference
**Anti-Patterns Explicitly Forbidden**:
- ❌ "エラーが出た。もう一回やってみよう"
- ❌ Retry 1, 2, 3 times with same approach
- ❌ "Warningあるけど動くからOK"
**Correct Patterns Enforced**:
- ✅ Error → Investigate official docs
- ✅ Understand root cause → Design different solution
- ✅ Document learning → Prevent future recurrence
### 2. Warning/Error Investigation Culture ✅
**Core Principle**: 全ての警告・エラーに興味を持って調査する
**Implementation**:
- Zero tolerance for dismissal
- Mandatory investigation protocol (context7 + WebFetch)
- Impact categorization (Critical/Important/Informational)
- Documentation requirement for all decisions
**Quality Mindset**:
- Warnings = Future technical debt
- "Works now" ≠ "Production ready"
- Thorough investigation = Higher code quality
- Every warning is a learning opportunity
### 3. Memory Key Schema (Standardized) ✅
**Pattern**: `[category]/[subcategory]/[identifier]`
**Inspiration**: Kubernetes namespaces, Git refs, Prometheus metrics
**Categories Defined**:
- `session/`: Session lifecycle management
- `plan/`: Planning phase (hypothesis, architecture, rationale)
- `execution/`: Do phase (experiments, errors, solutions)
- `evaluation/`: Check phase (analysis, metrics, lessons)
- `learning/`: Knowledge capture (patterns, solutions, mistakes)
- `project/`: Project understanding (context, architecture, conventions)
**Benefits**:
- Consistent naming across all memory operations
- Easy to query and retrieve related memories
- Clear organization for knowledge management
- Inspired by proven OSS practices
### 4. PDCA Document Structure (Normalized) ✅
**Location**: `docs/pdca/[feature-name]/`
**Structure** (明確・わかりやすい):
```
docs/pdca/[feature-name]/
├── plan.md # Plan: 仮説・設計
├── do.md # Do: 実験・試行錯誤
├── check.md # Check: 評価・分析
└── act.md # Act: 改善・次アクション
```
**Templates Provided**:
- plan.md: Hypothesis, Expected Outcomes, Risks
- do.md: Implementation log (時系列), Learnings
- check.md: Results vs Expectations, What worked/failed
- act.md: Success patterns, Global rule updates, Checklist updates
**Lifecycle**:
1. Start → Create plan.md
2. Work → Update do.md continuously
3. Complete → Create check.md
4. Success → Formalize to docs/patterns/ + create act.md
5. Failure → Move to docs/mistakes/ + create act.md with prevention
## User Feedback Integration
### Key Insights from User:
1. **同じ方法を繰り返すからループする** → Root cause analysis mandatory
2. **警告を興味を持って調べる癖** → Zero tolerance culture implemented
3. **スキーマ未定義なら定義すべき** → Kubernetes-inspired schema added
4. **plan/do/check/actでわかりやすい** → PDCA structure normalized
5. **OSS参考にアイデアをパクる** → Kubernetes, Git, Prometheus patterns adopted
### Philosophy Embedded:
- "間違いを理解してから再試行" (Understand before retry)
- "警告 = 将来の技術的負債" (Warnings = Future debt)
- "コード品質向上 = 徹底調査文化" (Quality = Investigation culture)
- "アイデアに著作権なし" (Ideas are free to adopt)
## Expected Impact
### Code Quality:
- ✅ Fewer repeated errors (root cause analysis)
- ✅ Proactive technical debt prevention (warning investigation)
- ✅ Higher test coverage and security compliance
- ✅ Consistent documentation and knowledge capture
### Developer Experience:
- ✅ Clear PDCA structure (plan/do/check/act)
- ✅ Standardized memory keys (easy to use)
- ✅ Learning captured systematically
- ✅ Patterns reusable across projects
### Long-term Benefits:
- ✅ Continuous improvement culture
- ✅ Knowledge accumulation over sessions
- ✅ Reduced time on repeated mistakes
- ✅ Higher quality autonomous execution
## Next Steps
1. **Test in Real Usage**: Apply PM Agent to actual feature implementation
2. **Validate Improvements**: Measure error recovery cycles, warning handling
3. **Iterate Based on Results**: Refine based on real-world performance
4. **Document Success Cases**: Build example library of PDCA cycles
5. **Upstream Contribution**: After validation, contribute to SuperClaude
## Files Modified
- `superclaude/commands/pm.md`:
- Added "Self-Correcting Execution (Root Cause First)" section
- Added "Warning/Error Investigation Culture" section
- Added "Memory Key Schema (Standardized)" section
- Added "PDCA Document Structure (Normalized)" section
- ~260 lines of detailed implementation guidance
## Implementation Quality
- ✅ User feedback directly incorporated
- ✅ Real-world practices from Kubernetes, Git, Prometheus
- ✅ Clear anti-patterns and correct patterns defined
- ✅ Concrete examples and templates provided
- ✅ Japanese and English mixed (user preference respected)
- ✅ Philosophical principles embedded in implementation
This improvement represents a fundamental shift from "retry on error" to "understand then solve" approach, which should dramatically improve PM Agent's code quality and learning capabilities.