602 lines
18 KiB
Markdown
Raw Normal View History

# Modes Configuration (`modes.yaml`)
## Overview
The `modes.yaml` file defines behavioral mode configurations for the SuperClaude-Lite framework. This configuration controls mode detection patterns, activation thresholds, coordination strategies, and integration patterns for all four SuperClaude behavioral modes.
## Purpose and Role
The modes configuration serves as:
- **Mode Detection Engine**: Defines trigger patterns and confidence thresholds for automatic mode activation
- **Behavioral Configuration**: Specifies mode-specific settings and coordination patterns
- **Integration Orchestration**: Manages mode coordination with hooks, MCP servers, and commands
- **Performance Optimization**: Configures performance profiles and resource management for each mode
- **Learning Integration**: Enables mode effectiveness tracking and adaptive optimization
## Configuration Structure
### 1. Mode Detection Patterns (`mode_detection`)
#### Brainstorming Mode
```yaml
brainstorming:
description: "Interactive requirements discovery and exploration"
activation_type: "automatic"
confidence_threshold: 0.7
trigger_patterns:
vague_requests:
- "i want to build"
- "thinking about"
- "not sure"
- "maybe we could"
- "what if we"
- "considering"
exploration_keywords:
- "brainstorm"
- "explore"
- "discuss"
- "figure out"
- "work through"
- "think through"
uncertainty_indicators:
- "maybe"
- "possibly"
- "perhaps"
- "could we"
- "would it be possible"
- "wondering if"
project_initiation:
- "new project"
- "startup idea"
- "feature concept"
- "app idea"
- "building something"
```
**Purpose**: Detects exploratory and uncertain requests that benefit from interactive dialogue
**Activation**: Automatic with 70% confidence threshold
**Behavioral Settings**: Collaborative, non-presumptive dialogue with adaptive discovery depth
#### Task Management Mode
```yaml
task_management:
description: "Multi-layer task orchestration with delegation and wave systems"
activation_type: "automatic"
confidence_threshold: 0.8
trigger_patterns:
multi_step_operations:
- "build"
- "implement"
- "create"
- "develop"
- "set up"
- "establish"
scope_indicators:
- "system"
- "feature"
- "comprehensive"
- "complete"
- "entire"
- "full"
complexity_indicators:
- "complex"
- "multiple"
- "several"
- "many"
- "various"
- "different"
auto_activation_thresholds:
file_count: 3
directory_count: 2
complexity_score: 0.4
operation_types: 2
```
**Purpose**: Manages complex, multi-step operations requiring coordination and delegation
**Activation**: Automatic with 80% confidence threshold and quantitative thresholds
**Thresholds**: 3+ files, 2+ directories, 0.4+ complexity score, 2+ operation types
#### Token Efficiency Mode
```yaml
token_efficiency:
description: "Intelligent token optimization with adaptive compression"
activation_type: "automatic"
confidence_threshold: 0.75
trigger_patterns:
resource_constraints:
- "context usage >75%"
- "large-scale operations"
- "resource constraints"
- "memory pressure"
user_requests:
- "brief"
- "concise"
- "compressed"
- "short"
- "efficient"
- "minimal"
efficiency_needs:
- "token optimization"
- "resource optimization"
- "efficiency"
- "performance"
```
**Purpose**: Optimizes token usage through intelligent compression and symbol systems
**Activation**: Automatic with 75% confidence threshold
**Compression Levels**: Minimal (0-40%) through Emergency (95%+)
#### Introspection Mode
```yaml
introspection:
description: "Meta-cognitive analysis and framework troubleshooting"
activation_type: "automatic"
confidence_threshold: 0.6
trigger_patterns:
self_analysis:
- "analyze reasoning"
- "examine decision"
- "reflect on"
- "thinking process"
- "decision logic"
problem_solving:
- "complex problem"
- "multi-step"
- "meta-cognitive"
- "systematic thinking"
error_recovery:
- "outcomes don't match"
- "errors occur"
- "unexpected results"
- "troubleshoot"
framework_discussion:
- "SuperClaude"
- "framework"
- "meta-conversation"
- "system analysis"
```
**Purpose**: Enables meta-cognitive analysis and framework troubleshooting
**Activation**: Automatic with 60% confidence threshold (lower threshold for broader detection)
**Analysis Depth**: Meta-cognitive with high transparency and continuous pattern recognition
### 2. Mode Coordination Patterns (`mode_coordination`)
#### Concurrent Mode Support
```yaml
concurrent_modes:
allowed_combinations:
- ["brainstorming", "token_efficiency"]
- ["task_management", "token_efficiency"]
- ["introspection", "token_efficiency"]
- ["task_management", "introspection"]
coordination_strategies:
brainstorming_efficiency: "compress_non_dialogue_content"
task_management_efficiency: "compress_session_metadata"
introspection_efficiency: "selective_analysis_compression"
```
**Purpose**: Enables multiple modes to work together efficiently
**Token Efficiency Integration**: Can combine with any other mode for resource optimization
**Coordination Strategies**: Mode-specific compression and optimization patterns
#### Mode Transitions
```yaml
mode_transitions:
brainstorming_to_task_management:
trigger: "requirements_clarified"
handoff_data: ["brief", "requirements", "constraints"]
task_management_to_introspection:
trigger: "complex_issues_encountered"
handoff_data: ["task_context", "performance_metrics", "issues"]
any_to_token_efficiency:
trigger: "resource_pressure"
activation_priority: "immediate"
```
**Purpose**: Manages smooth transitions between modes with context preservation
**Automatic Handoffs**: Seamless transitions based on contextual triggers
**Data Preservation**: Critical context maintained during transitions
### 3. Performance Profiles (`performance_profiles`)
#### Lightweight Profile
```yaml
lightweight:
target_response_time_ms: 100
memory_usage_mb: 25
cpu_utilization_percent: 20
token_optimization: "standard"
```
**Usage**: Token Efficiency Mode, simple operations
**Characteristics**: Fast response, minimal resource usage, standard optimization
#### Standard Profile
```yaml
standard:
target_response_time_ms: 200
memory_usage_mb: 50
cpu_utilization_percent: 40
token_optimization: "balanced"
```
**Usage**: Brainstorming Mode, typical operations
**Characteristics**: Balanced performance and functionality
#### Intensive Profile
```yaml
intensive:
target_response_time_ms: 500
memory_usage_mb: 100
cpu_utilization_percent: 70
token_optimization: "aggressive"
```
**Usage**: Task Management Mode, complex operations
**Characteristics**: Higher resource usage for complex analysis and coordination
### 4. Mode-Specific Configurations (`mode_configurations`)
#### Brainstorming Configuration
```yaml
brainstorming:
dialogue:
max_rounds: 15
convergence_threshold: 0.85
context_preservation: "full"
brief_generation:
min_requirements: 3
include_context: true
validation_criteria: ["clarity", "completeness", "actionability"]
integration:
auto_handoff: true
prd_agent: "brainstorm-PRD"
command_coordination: "/sc:brainstorm"
```
**Dialogue Management**: Up to 15 dialogue rounds with 85% convergence threshold
**Brief Quality**: Minimum 3 requirements with comprehensive validation
**Integration**: Automatic handoff to PRD agent with command coordination
#### Task Management Configuration
```yaml
task_management:
delegation:
default_strategy: "auto"
concurrency_limit: 7
performance_monitoring: true
wave_orchestration:
auto_activation: true
complexity_threshold: 0.4
coordination_strategy: "adaptive"
analytics:
real_time_tracking: true
performance_metrics: true
optimization_suggestions: true
```
**Delegation**: Auto-strategy with 7 concurrent operations and performance monitoring
**Wave Orchestration**: Auto-activation at 0.4 complexity with adaptive coordination
**Analytics**: Real-time tracking with comprehensive performance metrics
#### Token Efficiency Configuration
```yaml
token_efficiency:
compression:
adaptive_levels: true
quality_thresholds: [0.98, 0.95, 0.90, 0.85, 0.80]
symbol_systems: true
abbreviation_systems: true
selective_compression:
framework_exclusion: true
user_content_preservation: true
session_data_optimization: true
performance:
processing_target_ms: 150
efficiency_target: 0.50
quality_preservation: 0.95
```
**Compression**: 5-level adaptive compression with quality thresholds
**Selective Application**: Framework protection with user content preservation
**Performance**: 150ms processing target with 50% efficiency gain and 95% quality preservation
#### Introspection Configuration
```yaml
introspection:
analysis:
reasoning_depth: "comprehensive"
pattern_detection: "continuous"
bias_recognition: "active"
transparency:
thinking_process_exposure: true
decision_logic_analysis: true
assumption_validation: true
learning:
pattern_recognition: "continuous"
effectiveness_tracking: true
adaptation_suggestions: true
```
**Analysis Depth**: Comprehensive reasoning analysis with continuous pattern detection
**Transparency**: Full exposure of thinking processes and decision logic
**Learning**: Continuous pattern recognition with effectiveness tracking
### 5. Learning Integration (`learning_integration`)
#### Effectiveness Tracking
```yaml
learning_integration:
mode_effectiveness_tracking:
enabled: true
metrics:
- "activation_accuracy"
- "user_satisfaction"
- "task_completion_rates"
- "performance_improvements"
```
**Metrics Collection**: Comprehensive effectiveness measurement across multiple dimensions
**Continuous Monitoring**: Real-time tracking of mode performance and user satisfaction
#### Adaptation Triggers
```yaml
adaptation_triggers:
effectiveness_threshold: 0.7
user_preference_weight: 0.8
performance_impact_weight: 0.6
```
**Threshold Management**: 70% effectiveness threshold triggers adaptation
**Preference Learning**: High weight on user preferences (80%)
**Performance Balance**: Moderate weight on performance impact (60%)
#### Pattern Learning
```yaml
pattern_learning:
user_specific: true
project_specific: true
context_aware: true
cross_session: true
```
**Learning Scope**: Multi-dimensional learning across user, project, context, and time
**Continuous Improvement**: Persistent learning across sessions for long-term optimization
### 6. Quality Gates Integration (`quality_gates`)
```yaml
quality_gates:
mode_activation:
pattern_confidence: 0.6
context_appropriateness: 0.7
performance_readiness: true
mode_coordination:
conflict_resolution: "automatic"
resource_allocation: "intelligent"
performance_monitoring: "continuous"
mode_effectiveness:
real_time_monitoring: true
adaptation_triggers: true
quality_preservation: true
```
**Activation Quality**: Pattern confidence and context appropriateness thresholds
**Coordination Quality**: Automatic conflict resolution with intelligent resource allocation
**Effectiveness Quality**: Real-time monitoring with adaptation triggers
## Integration Points
### 1. Hook Integration (`integration_points.hooks`)
```yaml
hooks:
session_start: "mode_initialization"
pre_tool_use: "mode_coordination"
post_tool_use: "mode_effectiveness_tracking"
stop: "mode_analytics_consolidation"
```
**Session Start**: Mode initialization and activation
**Pre-Tool Use**: Mode coordination and optimization
**Post-Tool Use**: Effectiveness tracking and validation
**Stop**: Analytics consolidation and learning
### 2. MCP Server Integration (`integration_points.mcp_servers`)
```yaml
mcp_servers:
brainstorming: ["sequential", "context7"]
task_management: ["serena", "morphllm"]
token_efficiency: ["morphllm"]
introspection: ["sequential"]
```
**Brainstorming**: Sequential reasoning with documentation access
**Task Management**: Semantic analysis with intelligent editing
**Token Efficiency**: Optimized editing for compression
**Introspection**: Deep analysis for meta-cognitive examination
### 3. Command Integration (`integration_points.commands`)
```yaml
commands:
brainstorming: "/sc:brainstorm"
task_management: ["/task", "/spawn", "/loop"]
reflection: "/sc:reflect"
```
**Brainstorming**: Dedicated brainstorming command
**Task Management**: Multi-command orchestration
**Reflection**: Introspection and analysis command
## Performance Implications
### 1. Mode Detection Overhead
#### Pattern Matching Performance
- **Detection Time**: 10-50ms per mode evaluation
- **Confidence Calculation**: 5-20ms per trigger pattern set
- **Total Detection**: 50-200ms for all mode evaluations
#### Memory Usage
- **Pattern Storage**: 10-20KB per mode configuration
- **Detection State**: 5-10KB during evaluation
- **Total Memory**: 50-100KB for mode detection system
### 2. Mode Coordination Impact
#### Concurrent Mode Overhead
- **Coordination Logic**: 20-100ms for multi-mode coordination
- **Resource Allocation**: 10-50ms for intelligent resource management
- **Transition Handling**: 50-200ms for mode transitions with data preservation
#### Resource Distribution
- **CPU Allocation**: Dynamic based on mode performance profiles
- **Memory Management**: Intelligent allocation based on mode requirements
- **Token Optimization**: Coordinated across all active modes
### 3. Learning System Performance
#### Effectiveness Tracking
- **Metrics Collection**: 5-20ms per mode operation
- **Pattern Analysis**: 50-200ms for pattern recognition updates
- **Adaptation Application**: 100-500ms for mode parameter adjustments
#### Storage Impact
- **Learning Data**: 100-500KB per mode per session
- **Pattern Storage**: 50-200KB persistent patterns per mode
- **Total Learning**: 1-5MB learning data with compression
## Configuration Best Practices
### 1. Production Mode Configuration
```yaml
# Optimize for reliability and performance
mode_detection:
brainstorming:
confidence_threshold: 0.8 # Higher threshold for production
task_management:
auto_activation_thresholds:
file_count: 5 # Higher threshold to prevent unnecessary activation
```
### 2. Development Mode Configuration
```yaml
# Lower thresholds for testing and experimentation
mode_detection:
introspection:
confidence_threshold: 0.4 # Lower threshold for more introspection
learning_integration:
adaptation_triggers:
effectiveness_threshold: 0.5 # More aggressive adaptation
```
### 3. Performance-Optimized Configuration
```yaml
# Minimal mode activation for performance-critical environments
performance_profiles:
lightweight:
target_response_time_ms: 50 # Stricter performance targets
mode_coordination:
concurrent_modes:
allowed_combinations: [] # Disable concurrent modes
```
### 4. Learning-Optimized Configuration
```yaml
# Maximum learning and adaptation
learning_integration:
pattern_learning:
cross_session: true
adaptation_frequency: "high"
mode_effectiveness_tracking:
detailed_analytics: true
```
## Troubleshooting
### Common Mode Issues
#### Mode Not Activating
- **Check**: Trigger patterns match user input
- **Verify**: Confidence threshold appropriate for use case
- **Debug**: Log pattern matching results
- **Adjust**: Lower confidence threshold or add trigger patterns
#### Wrong Mode Activated
- **Analysis**: Review trigger pattern specificity
- **Solution**: Increase confidence thresholds or refine patterns
- **Testing**: Test pattern matching with sample inputs
- **Validation**: Monitor mode activation accuracy metrics
#### Mode Coordination Conflicts
- **Symptoms**: Multiple modes competing for resources
- **Resolution**: Check allowed combinations and coordination strategies
- **Optimization**: Adjust resource allocation and priority settings
- **Monitoring**: Track coordination effectiveness metrics
#### Performance Degradation
- **Identification**: Monitor mode detection and coordination overhead
- **Optimization**: Adjust performance profiles and thresholds
- **Resource Management**: Review concurrent mode limitations
- **Profiling**: Analyze mode-specific performance impact
### Learning System Troubleshooting
#### No Learning Observed
- **Check**: Learning integration enabled for relevant modes
- **Verify**: Effectiveness tracking collecting data
- **Debug**: Review adaptation trigger thresholds
- **Fix**: Ensure learning data persistence and pattern storage
#### Ineffective Adaptations
- **Analysis**: Review effectiveness metrics and adaptation triggers
- **Adjustment**: Modify effectiveness thresholds and learning weights
- **Validation**: Test adaptation effectiveness with controlled scenarios
- **Monitoring**: Track long-term learning trends and user satisfaction
## Related Documentation
- **Mode Implementation**: See individual mode documentation (MODE_*.md files)
- **Hook Integration**: Reference hook documentation for mode coordination
- **MCP Server Coordination**: Review MCP server documentation for mode-specific optimization
- **Command Integration**: See command documentation for mode-command coordination
## Version History
- **v1.0.0**: Initial modes configuration
- 4-mode behavioral system with comprehensive detection patterns
- Mode coordination and transition management
- Performance profiles and resource management
- Learning integration with effectiveness tracking
- Quality gates integration for mode validation