mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-29 16:16:08 +00:00
462 lines
18 KiB
Markdown
462 lines
18 KiB
Markdown
|
|
# Subagent Stop Hook Documentation
|
||
|
|
|
||
|
|
## Purpose
|
||
|
|
|
||
|
|
The `subagent_stop` hook implements **MODE_Task_Management delegation coordination and analytics** by analyzing subagent task completion performance and providing comprehensive delegation effectiveness measurement. This hook specializes in **task delegation analytics and coordination**, measuring multi-agent collaboration effectiveness and optimizing wave orchestration strategies.
|
||
|
|
|
||
|
|
**Core Responsibilities:**
|
||
|
|
- Analyze subagent task completion and performance metrics
|
||
|
|
- Measure delegation effectiveness and coordination success
|
||
|
|
- Learn from parallel execution patterns and cross-agent coordination
|
||
|
|
- Optimize wave orchestration strategies for multi-agent operations
|
||
|
|
- Coordinate cross-agent knowledge sharing and learning
|
||
|
|
- Track task management framework effectiveness across delegated operations
|
||
|
|
|
||
|
|
## Execution Context
|
||
|
|
|
||
|
|
The `subagent_stop` hook executes **after subagent operations complete** in Claude Code, specifically when:
|
||
|
|
|
||
|
|
- **Subagent Task Completion**: When individual subagents finish their delegated tasks
|
||
|
|
- **Multi-Agent Coordination End**: After parallel task execution completes
|
||
|
|
- **Wave Orchestration Completion**: When wave-based task coordination finishes
|
||
|
|
- **Delegation Strategy Assessment**: For analyzing effectiveness of different delegation approaches
|
||
|
|
- **Cross-Agent Learning**: When coordination patterns need to be captured for future optimization
|
||
|
|
|
||
|
|
**Integration Points:**
|
||
|
|
- Integrates with Claude Code's subagent delegation system
|
||
|
|
- Coordinates with MODE_Task_Management for delegation analytics
|
||
|
|
- Synchronizes with wave orchestration for multi-agent coordination
|
||
|
|
- Links with learning engine for continuous delegation improvement
|
||
|
|
|
||
|
|
## Performance Target
|
||
|
|
|
||
|
|
**Target Execution Time: <150ms**
|
||
|
|
|
||
|
|
The hook maintains strict performance requirements to ensure minimal overhead during delegation analytics:
|
||
|
|
|
||
|
|
```python
|
||
|
|
# Performance configuration
|
||
|
|
self.performance_target_ms = config_loader.get_hook_config('subagent_stop', 'performance_target_ms', 150)
|
||
|
|
|
||
|
|
# Performance tracking
|
||
|
|
execution_time = (time.time() - start_time) * 1000
|
||
|
|
coordination_report['performance_metrics'] = {
|
||
|
|
'coordination_analysis_time_ms': execution_time,
|
||
|
|
'target_met': execution_time < self.performance_target_ms,
|
||
|
|
'coordination_efficiency': self._calculate_coordination_efficiency(context, execution_time)
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Performance Optimization Features:**
|
||
|
|
- **Fast Context Extraction**: Efficient subagent data parsing and context enrichment
|
||
|
|
- **Streamlined Analytics**: Optimized delegation effectiveness calculations
|
||
|
|
- **Batched Operations**: Grouped analysis operations for efficiency
|
||
|
|
- **Cached Learning**: Reuse of previous coordination patterns for faster analysis
|
||
|
|
|
||
|
|
## Delegation Analytics
|
||
|
|
|
||
|
|
The hook provides comprehensive **delegation effectiveness measurement** through multiple analytical dimensions:
|
||
|
|
|
||
|
|
### Task Completion Analysis
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _analyze_task_completion(self, context: dict) -> dict:
|
||
|
|
"""Analyze task completion performance."""
|
||
|
|
task_analysis = {
|
||
|
|
'completion_success': context.get('task_success', False),
|
||
|
|
'completion_quality': context.get('output_quality', 0.0),
|
||
|
|
'completion_efficiency': context.get('resource_efficiency', 0.0),
|
||
|
|
'completion_time_performance': 0.0,
|
||
|
|
'success_factors': [],
|
||
|
|
'improvement_areas': []
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Key Metrics:**
|
||
|
|
- **Completion Success Rate**: Binary success/failure tracking for delegated tasks
|
||
|
|
- **Output Quality Assessment**: Quality scoring (0.0-1.0) based on validation results and error indicators
|
||
|
|
- **Resource Efficiency**: Memory, CPU, and time utilization effectiveness measurement
|
||
|
|
- **Time Performance**: Actual vs. expected execution time analysis
|
||
|
|
- **Success Factor Identification**: Patterns that lead to successful delegation outcomes
|
||
|
|
- **Improvement Area Detection**: Areas requiring optimization in future delegations
|
||
|
|
|
||
|
|
### Delegation Effectiveness Measurement
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _analyze_delegation_effectiveness(self, context: dict, task_analysis: dict) -> dict:
|
||
|
|
"""Analyze effectiveness of task delegation."""
|
||
|
|
delegation_analysis = {
|
||
|
|
'delegation_strategy': context.get('delegation_strategy', 'unknown'),
|
||
|
|
'delegation_success': context.get('task_success', False),
|
||
|
|
'delegation_efficiency': 0.0,
|
||
|
|
'coordination_overhead': 0.0,
|
||
|
|
'parallel_benefit': 0.0,
|
||
|
|
'delegation_value': 0.0
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Delegation Strategies Analyzed:**
|
||
|
|
- **Files Strategy**: Individual file-based delegation effectiveness
|
||
|
|
- **Folders Strategy**: Directory-level delegation performance
|
||
|
|
- **Auto Strategy**: Intelligent delegation strategy effectiveness
|
||
|
|
- **Custom Strategies**: User-defined delegation pattern analysis
|
||
|
|
|
||
|
|
**Effectiveness Dimensions:**
|
||
|
|
- **Delegation Efficiency**: Ratio of productive work to coordination overhead
|
||
|
|
- **Coordination Overhead**: Time and resource cost of agent coordination
|
||
|
|
- **Parallel Benefit**: Actual speedup achieved through parallel execution
|
||
|
|
- **Overall Delegation Value**: Composite score weighing quality, efficiency, and parallel benefits
|
||
|
|
|
||
|
|
## Wave Orchestration
|
||
|
|
|
||
|
|
The hook provides advanced **multi-agent coordination analysis** for wave-based task orchestration:
|
||
|
|
|
||
|
|
### Wave Coordination Success
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _analyze_coordination_patterns(self, context: dict, delegation_analysis: dict) -> dict:
|
||
|
|
"""Analyze coordination patterns and effectiveness."""
|
||
|
|
coordination_analysis = {
|
||
|
|
'coordination_strategy': 'unknown',
|
||
|
|
'synchronization_effectiveness': 0.0,
|
||
|
|
'data_flow_efficiency': 0.0,
|
||
|
|
'wave_coordination_success': 0.0,
|
||
|
|
'cross_agent_learning': 0.0,
|
||
|
|
'coordination_patterns_detected': []
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Wave Orchestration Features:**
|
||
|
|
- **Progressive Enhancement**: Iterative improvement through multiple coordination waves
|
||
|
|
- **Systematic Analysis**: Comprehensive methodical analysis across wave cycles
|
||
|
|
- **Adaptive Coordination**: Dynamic strategy adjustment based on wave performance
|
||
|
|
- **Enterprise Orchestration**: Large-scale coordination for complex multi-agent operations
|
||
|
|
|
||
|
|
### Wave Performance Metrics
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _update_wave_orchestration_metrics(self, context: dict, coordination_analysis: dict) -> dict:
|
||
|
|
"""Update wave orchestration performance metrics."""
|
||
|
|
wave_metrics = {
|
||
|
|
'wave_performance': 0.0,
|
||
|
|
'orchestration_efficiency': 0.0,
|
||
|
|
'wave_learning_value': 0.0,
|
||
|
|
'next_wave_recommendations': []
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Wave Strategy Analysis:**
|
||
|
|
- **Wave Position Tracking**: Current position within multi-wave coordination
|
||
|
|
- **Inter-Wave Communication**: Data flow and synchronization between waves
|
||
|
|
- **Wave Success Metrics**: Performance measurement across wave cycles
|
||
|
|
- **Orchestration Efficiency**: Resource utilization effectiveness in wave coordination
|
||
|
|
|
||
|
|
## Cross-Agent Learning
|
||
|
|
|
||
|
|
The hook implements **sophisticated learning mechanisms** for continuous delegation improvement:
|
||
|
|
|
||
|
|
### Learning Event Recording
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _record_coordination_learning(self, context: dict, delegation_analysis: dict,
|
||
|
|
optimization_insights: dict):
|
||
|
|
"""Record coordination learning for future optimization."""
|
||
|
|
# Record delegation effectiveness
|
||
|
|
self.learning_engine.record_learning_event(
|
||
|
|
LearningType.PERFORMANCE_OPTIMIZATION,
|
||
|
|
AdaptationScope.PROJECT,
|
||
|
|
context,
|
||
|
|
{
|
||
|
|
'delegation_strategy': context.get('delegation_strategy'),
|
||
|
|
'task_type': context.get('task_type'),
|
||
|
|
'delegation_value': delegation_analysis['delegation_value'],
|
||
|
|
'coordination_overhead': delegation_analysis['coordination_overhead'],
|
||
|
|
'parallel_benefit': delegation_analysis['parallel_benefit']
|
||
|
|
},
|
||
|
|
delegation_analysis['delegation_value'],
|
||
|
|
0.8,
|
||
|
|
{'hook': 'subagent_stop', 'coordination_learning': True}
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
**Learning Categories:**
|
||
|
|
- **Performance Optimization**: Delegation strategy effectiveness patterns
|
||
|
|
- **Operation Patterns**: Successful task completion patterns
|
||
|
|
- **Coordination Patterns**: Effective multi-agent coordination strategies
|
||
|
|
- **Error Recovery**: Learning from delegation failures and recovery strategies
|
||
|
|
|
||
|
|
**Learning Scopes:**
|
||
|
|
- **Project-Level Learning**: Delegation patterns specific to current project
|
||
|
|
- **User-Level Learning**: Cross-project delegation preferences and patterns
|
||
|
|
- **System-Level Learning**: Framework-wide coordination optimization patterns
|
||
|
|
|
||
|
|
## Parallel Execution Tracking
|
||
|
|
|
||
|
|
The hook provides comprehensive **parallel operation performance analysis**:
|
||
|
|
|
||
|
|
### Parallel Benefit Calculation
|
||
|
|
|
||
|
|
```python
|
||
|
|
# Calculate parallel benefit
|
||
|
|
parallel_tasks = context.get('parallel_tasks', [])
|
||
|
|
if len(parallel_tasks) > 1:
|
||
|
|
# Estimate parallel benefit based on task coordination
|
||
|
|
parallel_efficiency = context.get('parallel_efficiency', 1.0)
|
||
|
|
theoretical_speedup = len(parallel_tasks)
|
||
|
|
actual_speedup = theoretical_speedup * parallel_efficiency
|
||
|
|
delegation_analysis['parallel_benefit'] = actual_speedup / theoretical_speedup
|
||
|
|
```
|
||
|
|
|
||
|
|
**Parallel Performance Metrics:**
|
||
|
|
- **Theoretical vs. Actual Speedup**: Comparison of expected and achieved parallel performance
|
||
|
|
- **Parallel Efficiency**: Effectiveness of parallel task coordination
|
||
|
|
- **Synchronization Overhead**: Cost of coordinating parallel operations
|
||
|
|
- **Resource Contention Analysis**: Impact of resource sharing on parallel performance
|
||
|
|
|
||
|
|
### Coordination Pattern Detection
|
||
|
|
|
||
|
|
```python
|
||
|
|
# Detect coordination patterns
|
||
|
|
if delegation_analysis['delegation_value'] > 0.8:
|
||
|
|
coordination_analysis['coordination_patterns_detected'].append('effective_delegation')
|
||
|
|
|
||
|
|
if coordination_analysis['synchronization_effectiveness'] > 0.8:
|
||
|
|
coordination_analysis['coordination_patterns_detected'].append('efficient_synchronization')
|
||
|
|
|
||
|
|
if coordination_analysis['wave_coordination_success'] > 0.8:
|
||
|
|
coordination_analysis['coordination_patterns_detected'].append('successful_wave_orchestration')
|
||
|
|
```
|
||
|
|
|
||
|
|
**Pattern Categories:**
|
||
|
|
- **Effective Delegation**: High-value delegation strategies
|
||
|
|
- **Efficient Synchronization**: Optimal coordination mechanisms
|
||
|
|
- **Successful Wave Orchestration**: High-performing wave coordination patterns
|
||
|
|
- **Resource Optimization**: Efficient resource utilization patterns
|
||
|
|
|
||
|
|
## Configuration
|
||
|
|
|
||
|
|
The hook is configured through `superclaude-config.json` with comprehensive settings for delegation analytics:
|
||
|
|
|
||
|
|
### Core Configuration
|
||
|
|
|
||
|
|
```json
|
||
|
|
{
|
||
|
|
"hooks": {
|
||
|
|
"subagent_stop": {
|
||
|
|
"enabled": true,
|
||
|
|
"priority": 7,
|
||
|
|
"performance_target_ms": 150,
|
||
|
|
"delegation_analytics": {
|
||
|
|
"enabled": true,
|
||
|
|
"strategy_analysis": ["files", "folders", "auto"],
|
||
|
|
"effectiveness_threshold": 0.6,
|
||
|
|
"coordination_overhead_threshold": 0.3
|
||
|
|
},
|
||
|
|
"wave_orchestration": {
|
||
|
|
"enabled": true,
|
||
|
|
"wave_strategies": ["progressive", "systematic", "adaptive", "enterprise"],
|
||
|
|
"success_threshold": 0.7,
|
||
|
|
"learning_enabled": true
|
||
|
|
},
|
||
|
|
"parallel_tracking": {
|
||
|
|
"efficiency_threshold": 0.7,
|
||
|
|
"synchronization_tracking": true,
|
||
|
|
"resource_contention_analysis": true
|
||
|
|
},
|
||
|
|
"learning_configuration": {
|
||
|
|
"coordination_learning": true,
|
||
|
|
"pattern_detection": true,
|
||
|
|
"cross_agent_learning": true,
|
||
|
|
"performance_learning": true
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
### Task Management Configuration
|
||
|
|
|
||
|
|
```json
|
||
|
|
{
|
||
|
|
"session": {
|
||
|
|
"task_management": {
|
||
|
|
"delegation_strategies": ["files", "folders", "auto"],
|
||
|
|
"wave_orchestration": {
|
||
|
|
"enabled": true,
|
||
|
|
"strategies": ["progressive", "systematic", "adaptive", "enterprise"],
|
||
|
|
"complexity_threshold": 0.4,
|
||
|
|
"min_wave_tasks": 3
|
||
|
|
},
|
||
|
|
"parallel_coordination": {
|
||
|
|
"max_parallel_agents": 7,
|
||
|
|
"synchronization_timeout_ms": 5000,
|
||
|
|
"resource_sharing_enabled": true
|
||
|
|
},
|
||
|
|
"learning_integration": {
|
||
|
|
"delegation_learning": true,
|
||
|
|
"wave_learning": true,
|
||
|
|
"cross_session_learning": true
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
## MODE_Task_Management Integration
|
||
|
|
|
||
|
|
The hook implements **MODE_Task_Management** through comprehensive integration with the task management framework:
|
||
|
|
|
||
|
|
### Task Management Layer Integration
|
||
|
|
|
||
|
|
```python
|
||
|
|
# Load task management configuration
|
||
|
|
self.task_config = config_loader.get_section('session', 'task_management', {})
|
||
|
|
|
||
|
|
# Integration with task management layers
|
||
|
|
# Layer 1: TodoRead/TodoWrite (Session Tasks) - Real-time state management
|
||
|
|
# Layer 2: /task Command (Project Management) - Cross-session persistence
|
||
|
|
# Layer 3: /spawn Command (Meta-Orchestration) - Complex multi-domain operations
|
||
|
|
# Layer 4: /loop Command (Iterative Enhancement) - Progressive refinement workflows
|
||
|
|
```
|
||
|
|
|
||
|
|
**Framework Integration Points:**
|
||
|
|
- **Session Task Tracking**: Integration with TodoWrite for task completion analytics
|
||
|
|
- **Project Task Coordination**: Cross-session task management integration
|
||
|
|
- **Meta-Orchestration**: Complex multi-domain operation coordination
|
||
|
|
- **Iterative Enhancement**: Progressive refinement and quality improvement cycles
|
||
|
|
|
||
|
|
### Auto-Activation Patterns
|
||
|
|
|
||
|
|
The hook supports MODE_Task_Management auto-activation patterns:
|
||
|
|
|
||
|
|
```python
|
||
|
|
# Auto-activation triggers from MODE_Task_Management:
|
||
|
|
# - Sub-Agent Delegation: >2 directories OR >3 files OR complexity >0.4
|
||
|
|
# - Wave Mode: complexity ≥0.4 AND files >3 AND operation_types >2
|
||
|
|
# - Loop Mode: polish, refine, enhance, improve keywords detected
|
||
|
|
```
|
||
|
|
|
||
|
|
**Detection Patterns:**
|
||
|
|
- **Multi-Step Operations**: 3+ step sequences with dependency analysis
|
||
|
|
- **Complexity Thresholds**: Operations exceeding 0.4 complexity score
|
||
|
|
- **File Count Triggers**: 3+ files for delegation, 2+ directories for coordination
|
||
|
|
- **Performance Opportunities**: Auto-detect parallelizable operations with time estimates
|
||
|
|
|
||
|
|
## Coordination Effectiveness
|
||
|
|
|
||
|
|
The hook provides comprehensive **success metrics for delegation** through multiple measurement dimensions:
|
||
|
|
|
||
|
|
### Overall Effectiveness Calculation
|
||
|
|
|
||
|
|
```python
|
||
|
|
'performance_summary': {
|
||
|
|
'overall_effectiveness': (
|
||
|
|
task_analysis['completion_quality'] * 0.4 +
|
||
|
|
delegation_analysis['delegation_value'] * 0.3 +
|
||
|
|
coordination_analysis['synchronization_effectiveness'] * 0.3
|
||
|
|
),
|
||
|
|
'delegation_success': delegation_analysis['delegation_value'] > 0.6,
|
||
|
|
'coordination_success': coordination_analysis['synchronization_effectiveness'] > 0.7,
|
||
|
|
'learning_value': wave_metrics.get('wave_learning_value', 0.5)
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Effectiveness Dimensions:**
|
||
|
|
- **Task Quality (40%)**: Output quality and completion success
|
||
|
|
- **Delegation Value (30%)**: Effectiveness of delegation strategy and execution
|
||
|
|
- **Coordination Success (30%)**: Synchronization and coordination effectiveness
|
||
|
|
|
||
|
|
### Success Thresholds
|
||
|
|
|
||
|
|
```python
|
||
|
|
# Success criteria
|
||
|
|
delegation_success = delegation_analysis['delegation_value'] > 0.6
|
||
|
|
coordination_success = coordination_analysis['synchronization_effectiveness'] > 0.7
|
||
|
|
wave_success = wave_metrics['wave_performance'] > 0.8
|
||
|
|
```
|
||
|
|
|
||
|
|
**Performance Benchmarks:**
|
||
|
|
- **Delegation Success**: >60% delegation value threshold
|
||
|
|
- **Coordination Success**: >70% synchronization effectiveness threshold
|
||
|
|
- **Wave Success**: >80% wave performance threshold
|
||
|
|
- **Overall Effectiveness**: Composite score incorporating all dimensions
|
||
|
|
|
||
|
|
### Optimization Recommendations
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _generate_optimization_insights(self, context: dict, task_analysis: dict,
|
||
|
|
delegation_analysis: dict, coordination_analysis: dict) -> dict:
|
||
|
|
"""Generate optimization insights for future delegations."""
|
||
|
|
insights = {
|
||
|
|
'delegation_optimizations': [],
|
||
|
|
'coordination_improvements': [],
|
||
|
|
'wave_strategy_recommendations': [],
|
||
|
|
'performance_enhancements': [],
|
||
|
|
'learning_opportunities': []
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Recommendation Categories:**
|
||
|
|
- **Delegation Optimizations**: Alternative strategies, overhead reduction, task partitioning improvements
|
||
|
|
- **Coordination Improvements**: Synchronization mechanism optimization, data exchange pattern improvements
|
||
|
|
- **Wave Strategy Recommendations**: Orchestration strategy adjustments, task distribution optimization
|
||
|
|
- **Performance Enhancements**: Execution speed optimization, resource utilization improvements
|
||
|
|
- **Learning Opportunities**: Pattern recognition, cross-agent learning, continuous improvement areas
|
||
|
|
|
||
|
|
## Error Handling and Resilience
|
||
|
|
|
||
|
|
The hook implements robust error handling with graceful degradation:
|
||
|
|
|
||
|
|
```python
|
||
|
|
def _create_fallback_report(self, subagent_data: dict, error: str) -> dict:
|
||
|
|
"""Create fallback coordination report on error."""
|
||
|
|
return {
|
||
|
|
'subagent_id': subagent_data.get('subagent_id', 'unknown'),
|
||
|
|
'task_id': subagent_data.get('task_id', 'unknown'),
|
||
|
|
'completion_timestamp': time.time(),
|
||
|
|
'error': error,
|
||
|
|
'fallback_mode': True,
|
||
|
|
|
||
|
|
'task_completion': {
|
||
|
|
'success': False,
|
||
|
|
'quality_score': 0.0,
|
||
|
|
'efficiency_score': 0.0,
|
||
|
|
'error_occurred': True
|
||
|
|
}
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
**Error Recovery Strategies:**
|
||
|
|
- **Graceful Degradation**: Fallback coordination reports when analysis fails
|
||
|
|
- **Context Preservation**: Maintain essential coordination data even during errors
|
||
|
|
- **Error Logging**: Comprehensive error tracking for debugging and improvement
|
||
|
|
- **Performance Monitoring**: Continue performance tracking even in error conditions
|
||
|
|
|
||
|
|
## Integration with SuperClaude Framework
|
||
|
|
|
||
|
|
The hook integrates seamlessly with the broader SuperClaude framework:
|
||
|
|
|
||
|
|
### Framework Components
|
||
|
|
|
||
|
|
- **Learning Engine Integration**: Records coordination patterns for continuous improvement
|
||
|
|
- **Pattern Detection**: Identifies successful delegation and coordination patterns
|
||
|
|
- **MCP Intelligence**: Coordinates with MCP servers for enhanced analysis
|
||
|
|
- **Compression Engine**: Optimizes data storage and transfer for coordination analytics
|
||
|
|
- **Framework Logic**: Implements SuperClaude operational principles and patterns
|
||
|
|
|
||
|
|
### Quality Gates Integration
|
||
|
|
|
||
|
|
The hook contributes to SuperClaude's 8-step quality validation cycle:
|
||
|
|
- **Step 2.5**: Task management validation during orchestration operations
|
||
|
|
- **Step 7.5**: Session completion verification and summary documentation
|
||
|
|
- **Continuous**: Real-time metrics collection and performance monitoring
|
||
|
|
- **Post-Session**: Comprehensive session analytics and completion reporting
|
||
|
|
|
||
|
|
### Future Enhancements
|
||
|
|
|
||
|
|
Planned improvements for enhanced delegation coordination:
|
||
|
|
- **Predictive Delegation**: ML-based delegation strategy recommendation
|
||
|
|
- **Cross-Project Learning**: Delegation pattern sharing across projects
|
||
|
|
- **Real-Time Optimization**: Dynamic delegation adjustment during execution
|
||
|
|
- **Advanced Wave Strategies**: More sophisticated wave orchestration patterns
|
||
|
|
- **Resource Prediction**: Predictive resource allocation for delegated tasks
|