mirror of
https://github.com/SuperClaude-Org/SuperClaude_Framework.git
synced 2025-12-29 16:16:08 +00:00
631 lines
23 KiB
Markdown
631 lines
23 KiB
Markdown
|
|
# mcp_intelligence.py - Intelligent MCP Server Management Engine
|
||
|
|
|
||
|
|
## Overview
|
||
|
|
|
||
|
|
The `mcp_intelligence.py` module provides intelligent MCP server activation, coordination, and optimization based on ORCHESTRATOR.md patterns and real-time context analysis. It implements smart server selection, performance-optimized activation sequences, fallback strategies, cross-server coordination, and real-time adaptation based on effectiveness metrics.
|
||
|
|
|
||
|
|
## Purpose and Responsibilities
|
||
|
|
|
||
|
|
### Primary Functions
|
||
|
|
- **Smart Server Selection**: Context-aware MCP server recommendation and activation
|
||
|
|
- **Performance Optimization**: Optimized activation sequences with cost/benefit analysis
|
||
|
|
- **Fallback Strategy Management**: Robust error handling with alternative server routing
|
||
|
|
- **Cross-Server Coordination**: Intelligent coordination strategies for multi-server operations
|
||
|
|
- **Real-Time Adaptation**: Dynamic adaptation based on server effectiveness and availability
|
||
|
|
|
||
|
|
### Intelligence Capabilities
|
||
|
|
- **Hybrid Intelligence Routing**: Morphllm vs Serena decision matrix based on complexity
|
||
|
|
- **Resource-Aware Activation**: Adaptive server selection based on resource constraints
|
||
|
|
- **Performance Monitoring**: Real-time tracking of activation costs and effectiveness
|
||
|
|
- **Coordination Strategy Selection**: Dynamic coordination patterns based on operation characteristics
|
||
|
|
|
||
|
|
## Core Classes and Data Structures
|
||
|
|
|
||
|
|
### Enumerations
|
||
|
|
|
||
|
|
#### MCPServerState
|
||
|
|
```python
|
||
|
|
class MCPServerState(Enum):
|
||
|
|
AVAILABLE = "available" # Server ready for activation
|
||
|
|
UNAVAILABLE = "unavailable" # Server not accessible
|
||
|
|
LOADING = "loading" # Server currently activating
|
||
|
|
ERROR = "error" # Server in error state
|
||
|
|
```
|
||
|
|
|
||
|
|
### Data Classes
|
||
|
|
|
||
|
|
#### MCPServerCapability
|
||
|
|
```python
|
||
|
|
@dataclass
|
||
|
|
class MCPServerCapability:
|
||
|
|
server_name: str # Server identifier
|
||
|
|
primary_functions: List[str] # Core capabilities list
|
||
|
|
performance_profile: str # lightweight|standard|intensive
|
||
|
|
activation_cost_ms: int # Activation time in milliseconds
|
||
|
|
token_efficiency: float # 0.0 to 1.0 efficiency rating
|
||
|
|
quality_impact: float # 0.0 to 1.0 quality improvement rating
|
||
|
|
```
|
||
|
|
|
||
|
|
#### MCPActivationPlan
|
||
|
|
```python
|
||
|
|
@dataclass
|
||
|
|
class MCPActivationPlan:
|
||
|
|
servers_to_activate: List[str] # Servers to enable
|
||
|
|
activation_order: List[str] # Optimal activation sequence
|
||
|
|
estimated_cost_ms: int # Total activation time estimate
|
||
|
|
efficiency_gains: Dict[str, float] # Expected gains per server
|
||
|
|
fallback_strategy: Dict[str, str] # Fallback mappings
|
||
|
|
coordination_strategy: str # Coordination approach
|
||
|
|
```
|
||
|
|
|
||
|
|
## Server Capability Definitions
|
||
|
|
|
||
|
|
### Server Specifications
|
||
|
|
```python
|
||
|
|
def _load_server_capabilities(self) -> Dict[str, MCPServerCapability]:
|
||
|
|
capabilities = {}
|
||
|
|
|
||
|
|
capabilities['context7'] = MCPServerCapability(
|
||
|
|
server_name='context7',
|
||
|
|
primary_functions=['library_docs', 'framework_patterns', 'best_practices'],
|
||
|
|
performance_profile='standard',
|
||
|
|
activation_cost_ms=150,
|
||
|
|
token_efficiency=0.8,
|
||
|
|
quality_impact=0.9
|
||
|
|
)
|
||
|
|
|
||
|
|
capabilities['sequential'] = MCPServerCapability(
|
||
|
|
server_name='sequential',
|
||
|
|
primary_functions=['complex_analysis', 'multi_step_reasoning', 'debugging'],
|
||
|
|
performance_profile='intensive',
|
||
|
|
activation_cost_ms=200,
|
||
|
|
token_efficiency=0.6,
|
||
|
|
quality_impact=0.95
|
||
|
|
)
|
||
|
|
|
||
|
|
capabilities['magic'] = MCPServerCapability(
|
||
|
|
server_name='magic',
|
||
|
|
primary_functions=['ui_components', 'design_systems', 'frontend_generation'],
|
||
|
|
performance_profile='standard',
|
||
|
|
activation_cost_ms=120,
|
||
|
|
token_efficiency=0.85,
|
||
|
|
quality_impact=0.9
|
||
|
|
)
|
||
|
|
|
||
|
|
capabilities['playwright'] = MCPServerCapability(
|
||
|
|
server_name='playwright',
|
||
|
|
primary_functions=['e2e_testing', 'browser_automation', 'performance_testing'],
|
||
|
|
performance_profile='intensive',
|
||
|
|
activation_cost_ms=300,
|
||
|
|
token_efficiency=0.7,
|
||
|
|
quality_impact=0.85
|
||
|
|
)
|
||
|
|
|
||
|
|
capabilities['morphllm'] = MCPServerCapability(
|
||
|
|
server_name='morphllm',
|
||
|
|
primary_functions=['intelligent_editing', 'pattern_application', 'fast_apply'],
|
||
|
|
performance_profile='lightweight',
|
||
|
|
activation_cost_ms=80,
|
||
|
|
token_efficiency=0.9,
|
||
|
|
quality_impact=0.8
|
||
|
|
)
|
||
|
|
|
||
|
|
capabilities['serena'] = MCPServerCapability(
|
||
|
|
server_name='serena',
|
||
|
|
primary_functions=['semantic_analysis', 'project_context', 'memory_management'],
|
||
|
|
performance_profile='standard',
|
||
|
|
activation_cost_ms=100,
|
||
|
|
token_efficiency=0.75,
|
||
|
|
quality_impact=0.95
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
## Intelligent Activation Planning
|
||
|
|
|
||
|
|
### create_activation_plan()
|
||
|
|
```python
|
||
|
|
def create_activation_plan(self,
|
||
|
|
user_input: str,
|
||
|
|
context: Dict[str, Any],
|
||
|
|
operation_data: Dict[str, Any]) -> MCPActivationPlan:
|
||
|
|
```
|
||
|
|
|
||
|
|
**Planning Pipeline**:
|
||
|
|
1. **Pattern Detection**: Use PatternDetector to identify server needs
|
||
|
|
2. **Intelligent Optimization**: Apply context-aware server selection
|
||
|
|
3. **Activation Sequencing**: Calculate optimal activation order
|
||
|
|
4. **Cost Estimation**: Predict activation costs and efficiency gains
|
||
|
|
5. **Fallback Strategy**: Create robust error handling plan
|
||
|
|
6. **Coordination Strategy**: Determine multi-server coordination approach
|
||
|
|
|
||
|
|
### Server Selection Optimization
|
||
|
|
|
||
|
|
#### Hybrid Intelligence Decision Matrix
|
||
|
|
```python
|
||
|
|
def _optimize_server_selection(self,
|
||
|
|
recommended_servers: List[str],
|
||
|
|
context: Dict[str, Any],
|
||
|
|
operation_data: Dict[str, Any]) -> List[str]:
|
||
|
|
|
||
|
|
# Morphllm vs Serena intelligence selection
|
||
|
|
file_count = operation_data.get('file_count', 1)
|
||
|
|
complexity_score = operation_data.get('complexity_score', 0.0)
|
||
|
|
|
||
|
|
if 'morphllm' in optimized and 'serena' in optimized:
|
||
|
|
# Choose the more appropriate server based on complexity
|
||
|
|
if file_count > 10 or complexity_score > 0.6:
|
||
|
|
optimized.remove('morphllm') # Use Serena for complex operations
|
||
|
|
else:
|
||
|
|
optimized.remove('serena') # Use Morphllm for efficient operations
|
||
|
|
```
|
||
|
|
|
||
|
|
**Decision Criteria**:
|
||
|
|
- **Serena Optimal**: file_count > 10 OR complexity_score > 0.6
|
||
|
|
- **Morphllm Optimal**: file_count ≤ 10 AND complexity_score ≤ 0.6
|
||
|
|
|
||
|
|
#### Resource Constraint Optimization
|
||
|
|
```python
|
||
|
|
# Resource constraint optimization
|
||
|
|
resource_usage = context.get('resource_usage_percent', 0)
|
||
|
|
if resource_usage > 85:
|
||
|
|
# Remove intensive servers under resource constraints
|
||
|
|
intensive_servers = {
|
||
|
|
name for name, cap in self.server_capabilities.items()
|
||
|
|
if cap.performance_profile == 'intensive'
|
||
|
|
}
|
||
|
|
optimized -= intensive_servers
|
||
|
|
```
|
||
|
|
|
||
|
|
#### Context-Based Auto-Addition
|
||
|
|
```python
|
||
|
|
# Performance optimization based on operation type
|
||
|
|
operation_type = operation_data.get('operation_type', '')
|
||
|
|
if operation_type in ['read', 'analyze'] and 'sequential' not in optimized:
|
||
|
|
# Add Sequential for analysis operations
|
||
|
|
optimized.add('sequential')
|
||
|
|
|
||
|
|
# Auto-add Context7 if external libraries detected
|
||
|
|
if operation_data.get('has_external_dependencies', False):
|
||
|
|
optimized.add('context7')
|
||
|
|
```
|
||
|
|
|
||
|
|
## Activation Sequencing
|
||
|
|
|
||
|
|
### Optimal Activation Order
|
||
|
|
```python
|
||
|
|
def _calculate_activation_order(self, servers: List[str], context: Dict[str, Any]) -> List[str]:
|
||
|
|
ordered = []
|
||
|
|
|
||
|
|
# 1. Serena first if present (provides context for others)
|
||
|
|
if 'serena' in servers:
|
||
|
|
ordered.append('serena')
|
||
|
|
servers = [s for s in servers if s != 'serena']
|
||
|
|
|
||
|
|
# 2. Context7 early for documentation context
|
||
|
|
if 'context7' in servers:
|
||
|
|
ordered.append('context7')
|
||
|
|
servers = [s for s in servers if s != 'context7']
|
||
|
|
|
||
|
|
# 3. Remaining servers by activation cost (lightweight first)
|
||
|
|
remaining_costs = [
|
||
|
|
(server, self.server_capabilities[server].activation_cost_ms)
|
||
|
|
for server in servers
|
||
|
|
]
|
||
|
|
remaining_costs.sort(key=lambda x: x[1])
|
||
|
|
ordered.extend([server for server, _ in remaining_costs])
|
||
|
|
|
||
|
|
return ordered
|
||
|
|
```
|
||
|
|
|
||
|
|
**Activation Priorities**:
|
||
|
|
1. **Serena**: Provides project context for other servers
|
||
|
|
2. **Context7**: Supplies documentation context early
|
||
|
|
3. **Remaining**: Sorted by activation cost (lightweight → intensive)
|
||
|
|
|
||
|
|
## Performance Estimation
|
||
|
|
|
||
|
|
### Activation Cost Calculation
|
||
|
|
```python
|
||
|
|
def _calculate_activation_cost(self, servers: List[str]) -> int:
|
||
|
|
"""Calculate total activation cost in milliseconds."""
|
||
|
|
return sum(
|
||
|
|
self.server_capabilities[server].activation_cost_ms
|
||
|
|
for server in servers
|
||
|
|
if server in self.server_capabilities
|
||
|
|
)
|
||
|
|
```
|
||
|
|
|
||
|
|
### Efficiency Gains Calculation
|
||
|
|
```python
|
||
|
|
def _calculate_efficiency_gains(self, servers: List[str], operation_data: Dict[str, Any]) -> Dict[str, float]:
|
||
|
|
gains = {}
|
||
|
|
|
||
|
|
for server in servers:
|
||
|
|
capability = self.server_capabilities[server]
|
||
|
|
|
||
|
|
# Base efficiency gain
|
||
|
|
base_gain = capability.token_efficiency * capability.quality_impact
|
||
|
|
|
||
|
|
# Context-specific adjustments
|
||
|
|
if server == 'morphllm' and operation_data.get('file_count', 1) <= 5:
|
||
|
|
gains[server] = base_gain * 1.2 # Extra efficiency for small operations
|
||
|
|
elif server == 'serena' and operation_data.get('complexity_score', 0) > 0.6:
|
||
|
|
gains[server] = base_gain * 1.3 # Extra value for complex operations
|
||
|
|
elif server == 'sequential' and 'debug' in operation_data.get('operation_type', ''):
|
||
|
|
gains[server] = base_gain * 1.4 # Extra value for debugging
|
||
|
|
else:
|
||
|
|
gains[server] = base_gain
|
||
|
|
|
||
|
|
return gains
|
||
|
|
```
|
||
|
|
|
||
|
|
## Fallback Strategy Management
|
||
|
|
|
||
|
|
### Fallback Mappings
|
||
|
|
```python
|
||
|
|
def _create_fallback_strategy(self, servers: List[str]) -> Dict[str, str]:
|
||
|
|
"""Create fallback strategy for server failures."""
|
||
|
|
fallback_map = {
|
||
|
|
'morphllm': 'serena', # Serena can handle editing
|
||
|
|
'serena': 'morphllm', # Morphllm can handle simple edits
|
||
|
|
'sequential': 'context7', # Context7 for documentation-based analysis
|
||
|
|
'context7': 'sequential', # Sequential for complex analysis
|
||
|
|
'magic': 'morphllm', # Morphllm for component generation
|
||
|
|
'playwright': 'sequential' # Sequential for test planning
|
||
|
|
}
|
||
|
|
|
||
|
|
fallbacks = {}
|
||
|
|
for server in servers:
|
||
|
|
fallback = fallback_map.get(server)
|
||
|
|
if fallback and fallback not in servers:
|
||
|
|
fallbacks[server] = fallback
|
||
|
|
else:
|
||
|
|
fallbacks[server] = 'native_tools' # Fall back to native Claude tools
|
||
|
|
|
||
|
|
return fallbacks
|
||
|
|
```
|
||
|
|
|
||
|
|
## Coordination Strategy Selection
|
||
|
|
|
||
|
|
### Strategy Determination
|
||
|
|
```python
|
||
|
|
def _determine_coordination_strategy(self, servers: List[str], operation_data: Dict[str, Any]) -> str:
|
||
|
|
if len(servers) <= 1:
|
||
|
|
return 'single_server'
|
||
|
|
|
||
|
|
# Sequential coordination for complex analysis
|
||
|
|
if 'sequential' in servers and operation_data.get('complexity_score', 0) > 0.6:
|
||
|
|
return 'sequential_lead'
|
||
|
|
|
||
|
|
# Serena coordination for multi-file operations
|
||
|
|
if 'serena' in servers and operation_data.get('file_count', 1) > 5:
|
||
|
|
return 'serena_lead'
|
||
|
|
|
||
|
|
# Parallel coordination for independent operations
|
||
|
|
if len(servers) >= 3:
|
||
|
|
return 'parallel_with_sync'
|
||
|
|
|
||
|
|
return 'collaborative'
|
||
|
|
```
|
||
|
|
|
||
|
|
**Coordination Strategies**:
|
||
|
|
- **single_server**: Single server operation
|
||
|
|
- **sequential_lead**: Sequential server coordinates analysis
|
||
|
|
- **serena_lead**: Serena server coordinates multi-file operations
|
||
|
|
- **parallel_with_sync**: Parallel execution with synchronization points
|
||
|
|
- **collaborative**: Equal collaboration between servers
|
||
|
|
|
||
|
|
## Activation Plan Execution
|
||
|
|
|
||
|
|
### execute_activation_plan()
|
||
|
|
```python
|
||
|
|
def execute_activation_plan(self, plan: MCPActivationPlan, context: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
|
start_time = time.time()
|
||
|
|
activated_servers = []
|
||
|
|
failed_servers = []
|
||
|
|
fallback_activations = []
|
||
|
|
|
||
|
|
for server in plan.activation_order:
|
||
|
|
try:
|
||
|
|
# Check server availability
|
||
|
|
if self.server_states.get(server) == MCPServerState.UNAVAILABLE:
|
||
|
|
failed_servers.append(server)
|
||
|
|
self._handle_server_fallback(server, plan, fallback_activations)
|
||
|
|
continue
|
||
|
|
|
||
|
|
# Activate server (simulated - real implementation would call MCP)
|
||
|
|
self.server_states[server] = MCPServerState.LOADING
|
||
|
|
activation_start = time.time()
|
||
|
|
|
||
|
|
# Simulate activation with realistic variance
|
||
|
|
expected_cost = self.server_capabilities[server].activation_cost_ms
|
||
|
|
actual_cost = expected_cost * (0.8 + 0.4 * hash(server) % 1000 / 1000)
|
||
|
|
|
||
|
|
self.server_states[server] = MCPServerState.AVAILABLE
|
||
|
|
activated_servers.append(server)
|
||
|
|
|
||
|
|
# Track performance metrics
|
||
|
|
activation_time = (time.time() - activation_start) * 1000
|
||
|
|
self.performance_metrics[server] = {
|
||
|
|
'last_activation_ms': activation_time,
|
||
|
|
'expected_ms': expected_cost,
|
||
|
|
'efficiency_ratio': expected_cost / max(activation_time, 1)
|
||
|
|
}
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
failed_servers.append(server)
|
||
|
|
self.server_states[server] = MCPServerState.ERROR
|
||
|
|
self._handle_server_fallback(server, plan, fallback_activations)
|
||
|
|
|
||
|
|
total_time = (time.time() - start_time) * 1000
|
||
|
|
|
||
|
|
return {
|
||
|
|
'activated_servers': activated_servers,
|
||
|
|
'failed_servers': failed_servers,
|
||
|
|
'fallback_activations': fallback_activations,
|
||
|
|
'total_activation_time_ms': total_time,
|
||
|
|
'coordination_strategy': plan.coordination_strategy,
|
||
|
|
'performance_metrics': self.performance_metrics
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
## Performance Monitoring and Optimization
|
||
|
|
|
||
|
|
### Real-Time Performance Tracking
|
||
|
|
```python
|
||
|
|
# Track activation performance
|
||
|
|
self.performance_metrics[server] = {
|
||
|
|
'last_activation_ms': activation_time,
|
||
|
|
'expected_ms': expected_cost,
|
||
|
|
'efficiency_ratio': expected_cost / max(activation_time, 1)
|
||
|
|
}
|
||
|
|
|
||
|
|
# Maintain activation history
|
||
|
|
self.activation_history.append({
|
||
|
|
'timestamp': time.time(),
|
||
|
|
'plan': plan,
|
||
|
|
'activated': activated_servers,
|
||
|
|
'failed': failed_servers,
|
||
|
|
'fallbacks': fallback_activations,
|
||
|
|
'total_time_ms': total_time
|
||
|
|
})
|
||
|
|
```
|
||
|
|
|
||
|
|
### Optimization Recommendations
|
||
|
|
```python
|
||
|
|
def get_optimization_recommendations(self, context: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
|
recommendations = []
|
||
|
|
|
||
|
|
# Analyze recent activation patterns
|
||
|
|
if len(self.activation_history) >= 5:
|
||
|
|
recent_activations = self.activation_history[-5:]
|
||
|
|
|
||
|
|
# Check for frequently failing servers
|
||
|
|
failed_counts = {}
|
||
|
|
for activation in recent_activations:
|
||
|
|
for failed in activation['failed']:
|
||
|
|
failed_counts[failed] = failed_counts.get(failed, 0) + 1
|
||
|
|
|
||
|
|
for server, count in failed_counts.items():
|
||
|
|
if count >= 3:
|
||
|
|
recommendations.append(f"Server {server} failing frequently - consider fallback strategy")
|
||
|
|
|
||
|
|
# Check for performance issues
|
||
|
|
avg_times = {}
|
||
|
|
for activation in recent_activations:
|
||
|
|
total_time = activation['total_time_ms']
|
||
|
|
server_count = len(activation['activated'])
|
||
|
|
if server_count > 0:
|
||
|
|
avg_time_per_server = total_time / server_count
|
||
|
|
avg_times[len(activation['activated'])] = avg_time_per_server
|
||
|
|
|
||
|
|
if avg_times and max(avg_times.values()) > 500:
|
||
|
|
recommendations.append("Consider reducing concurrent server activations for better performance")
|
||
|
|
|
||
|
|
return {
|
||
|
|
'recommendations': recommendations,
|
||
|
|
'performance_metrics': self.performance_metrics,
|
||
|
|
'server_states': {k: v.value for k, v in self.server_states.items()},
|
||
|
|
'efficiency_score': self._calculate_overall_efficiency()
|
||
|
|
}
|
||
|
|
```
|
||
|
|
|
||
|
|
## Integration with Hooks
|
||
|
|
|
||
|
|
### Hook Usage Pattern
|
||
|
|
```python
|
||
|
|
# Initialize MCP intelligence
|
||
|
|
mcp_intelligence = MCPIntelligence()
|
||
|
|
|
||
|
|
# Create activation plan
|
||
|
|
activation_plan = mcp_intelligence.create_activation_plan(
|
||
|
|
user_input="I need to analyze this complex React application and optimize its performance",
|
||
|
|
context={
|
||
|
|
'resource_usage_percent': 65,
|
||
|
|
'user_expertise': 'intermediate',
|
||
|
|
'project_type': 'web'
|
||
|
|
},
|
||
|
|
operation_data={
|
||
|
|
'file_count': 25,
|
||
|
|
'complexity_score': 0.7,
|
||
|
|
'operation_type': 'analyze',
|
||
|
|
'has_external_dependencies': True
|
||
|
|
}
|
||
|
|
)
|
||
|
|
|
||
|
|
# Execute activation plan
|
||
|
|
execution_result = mcp_intelligence.execute_activation_plan(activation_plan, context)
|
||
|
|
|
||
|
|
# Process results
|
||
|
|
activated_servers = execution_result['activated_servers'] # ['serena', 'context7', 'sequential']
|
||
|
|
coordination_strategy = execution_result['coordination_strategy'] # 'sequential_lead'
|
||
|
|
total_time = execution_result['total_activation_time_ms'] # 450ms
|
||
|
|
```
|
||
|
|
|
||
|
|
### Activation Plan Analysis
|
||
|
|
```python
|
||
|
|
print(f"Servers to activate: {activation_plan.servers_to_activate}")
|
||
|
|
print(f"Activation order: {activation_plan.activation_order}")
|
||
|
|
print(f"Estimated cost: {activation_plan.estimated_cost_ms}ms")
|
||
|
|
print(f"Efficiency gains: {activation_plan.efficiency_gains}")
|
||
|
|
print(f"Fallback strategy: {activation_plan.fallback_strategy}")
|
||
|
|
print(f"Coordination: {activation_plan.coordination_strategy}")
|
||
|
|
```
|
||
|
|
|
||
|
|
### Performance Optimization
|
||
|
|
```python
|
||
|
|
# Get optimization recommendations
|
||
|
|
recommendations = mcp_intelligence.get_optimization_recommendations(context)
|
||
|
|
|
||
|
|
print(f"Recommendations: {recommendations['recommendations']}")
|
||
|
|
print(f"Efficiency score: {recommendations['efficiency_score']}")
|
||
|
|
print(f"Server states: {recommendations['server_states']}")
|
||
|
|
```
|
||
|
|
|
||
|
|
## Performance Characteristics
|
||
|
|
|
||
|
|
### Activation Planning
|
||
|
|
- **Pattern Detection Integration**: <25ms for pattern analysis
|
||
|
|
- **Server Selection Optimization**: <10ms for decision matrix
|
||
|
|
- **Activation Sequencing**: <5ms for ordering calculation
|
||
|
|
- **Cost Estimation**: <3ms for performance prediction
|
||
|
|
|
||
|
|
### Execution Performance
|
||
|
|
- **Single Server Activation**: 80-300ms depending on server type
|
||
|
|
- **Multi-Server Coordination**: 200-800ms for parallel activation
|
||
|
|
- **Fallback Handling**: <50ms additional overhead per failure
|
||
|
|
- **Performance Tracking**: <5ms per server for metrics collection
|
||
|
|
|
||
|
|
### Memory Efficiency
|
||
|
|
- **Server Capability Cache**: ~2-3KB for all server definitions
|
||
|
|
- **Activation History**: ~500B per activation record
|
||
|
|
- **Performance Metrics**: ~200B per server per activation
|
||
|
|
- **State Tracking**: ~100B per server state
|
||
|
|
|
||
|
|
## Error Handling Strategies
|
||
|
|
|
||
|
|
### Server Failure Handling
|
||
|
|
```python
|
||
|
|
def _handle_server_fallback(self, failed_server: str, plan: MCPActivationPlan, fallback_activations: List[str]):
|
||
|
|
"""Handle server activation failure with fallback strategy."""
|
||
|
|
fallback = plan.fallback_strategy.get(failed_server)
|
||
|
|
|
||
|
|
if fallback and fallback != 'native_tools' and fallback not in plan.servers_to_activate:
|
||
|
|
# Try to activate fallback server
|
||
|
|
if self.server_states.get(fallback) == MCPServerState.AVAILABLE:
|
||
|
|
fallback_activations.append(f"{failed_server}->{fallback}")
|
||
|
|
```
|
||
|
|
|
||
|
|
### Graceful Degradation
|
||
|
|
- **Server Unavailable**: Use fallback server or native tools
|
||
|
|
- **Activation Timeout**: Mark as failed, attempt fallback
|
||
|
|
- **Performance Issues**: Recommend optimization strategies
|
||
|
|
- **Resource Constraints**: Auto-disable intensive servers
|
||
|
|
|
||
|
|
### Recovery Mechanisms
|
||
|
|
- **Automatic Retry**: One retry attempt for transient failures
|
||
|
|
- **State Reset**: Clear error states after successful operations
|
||
|
|
- **History Cleanup**: Remove old activation history to prevent memory issues
|
||
|
|
- **Performance Adjustment**: Adapt expectations based on actual performance
|
||
|
|
|
||
|
|
## Configuration Requirements
|
||
|
|
|
||
|
|
### MCP Server Configuration
|
||
|
|
```yaml
|
||
|
|
mcp_server_integration:
|
||
|
|
servers:
|
||
|
|
context7:
|
||
|
|
enabled: true
|
||
|
|
activation_cost_ms: 150
|
||
|
|
performance_profile: "standard"
|
||
|
|
primary_functions:
|
||
|
|
- "library_docs"
|
||
|
|
- "framework_patterns"
|
||
|
|
- "best_practices"
|
||
|
|
|
||
|
|
sequential:
|
||
|
|
enabled: true
|
||
|
|
activation_cost_ms: 200
|
||
|
|
performance_profile: "intensive"
|
||
|
|
primary_functions:
|
||
|
|
- "complex_analysis"
|
||
|
|
- "multi_step_reasoning"
|
||
|
|
- "debugging"
|
||
|
|
```
|
||
|
|
|
||
|
|
### Orchestrator Configuration
|
||
|
|
```yaml
|
||
|
|
routing_patterns:
|
||
|
|
complexity_thresholds:
|
||
|
|
serena_threshold: 0.6
|
||
|
|
morphllm_threshold: 0.6
|
||
|
|
file_count_threshold: 10
|
||
|
|
|
||
|
|
resource_constraints:
|
||
|
|
intensive_disable_threshold: 85
|
||
|
|
performance_warning_threshold: 75
|
||
|
|
|
||
|
|
coordination_strategies:
|
||
|
|
sequential_lead_complexity: 0.6
|
||
|
|
serena_lead_files: 5
|
||
|
|
parallel_threshold: 3
|
||
|
|
```
|
||
|
|
|
||
|
|
## Usage Examples
|
||
|
|
|
||
|
|
### Basic Activation Planning
|
||
|
|
```python
|
||
|
|
mcp_intelligence = MCPIntelligence()
|
||
|
|
|
||
|
|
plan = mcp_intelligence.create_activation_plan(
|
||
|
|
user_input="Build a responsive React component with accessibility features",
|
||
|
|
context={'resource_usage_percent': 40, 'user_expertise': 'expert'},
|
||
|
|
operation_data={'file_count': 3, 'complexity_score': 0.4, 'operation_type': 'build'}
|
||
|
|
)
|
||
|
|
|
||
|
|
print(f"Recommended servers: {plan.servers_to_activate}") # ['magic', 'morphllm']
|
||
|
|
print(f"Activation order: {plan.activation_order}") # ['morphllm', 'magic']
|
||
|
|
print(f"Coordination: {plan.coordination_strategy}") # 'collaborative'
|
||
|
|
print(f"Estimated cost: {plan.estimated_cost_ms}ms") # 200ms
|
||
|
|
```
|
||
|
|
|
||
|
|
### Complex Multi-Server Operation
|
||
|
|
```python
|
||
|
|
plan = mcp_intelligence.create_activation_plan(
|
||
|
|
user_input="Analyze and refactor this large codebase with comprehensive testing",
|
||
|
|
context={'resource_usage_percent': 30, 'is_production': True},
|
||
|
|
operation_data={
|
||
|
|
'file_count': 50,
|
||
|
|
'complexity_score': 0.8,
|
||
|
|
'operation_type': 'refactor',
|
||
|
|
'has_tests': True,
|
||
|
|
'has_external_dependencies': True
|
||
|
|
}
|
||
|
|
)
|
||
|
|
|
||
|
|
print(f"Servers: {plan.servers_to_activate}") # ['serena', 'context7', 'sequential', 'playwright']
|
||
|
|
print(f"Order: {plan.activation_order}") # ['serena', 'context7', 'sequential', 'playwright']
|
||
|
|
print(f"Strategy: {plan.coordination_strategy}") # 'serena_lead'
|
||
|
|
print(f"Cost: {plan.estimated_cost_ms}ms") # 750ms
|
||
|
|
```
|
||
|
|
|
||
|
|
## Dependencies and Relationships
|
||
|
|
|
||
|
|
### Internal Dependencies
|
||
|
|
- **pattern_detection**: PatternDetector for intelligent server selection
|
||
|
|
- **yaml_loader**: Configuration loading for server capabilities
|
||
|
|
- **Standard Libraries**: time, typing, dataclasses, enum
|
||
|
|
|
||
|
|
### Framework Integration
|
||
|
|
- **ORCHESTRATOR.md**: Intelligent routing and coordination patterns
|
||
|
|
- **Performance Targets**: Sub-200ms activation goals with optimization
|
||
|
|
- **Quality Gates**: Server activation validation and monitoring
|
||
|
|
|
||
|
|
### Hook Coordination
|
||
|
|
- Used by all hooks for consistent MCP server management
|
||
|
|
- Provides standardized activation planning and execution
|
||
|
|
- Enables cross-hook performance monitoring and optimization
|
||
|
|
|
||
|
|
---
|
||
|
|
|
||
|
|
*This module serves as the intelligent orchestration layer for MCP server management, ensuring optimal server selection, efficient activation sequences, and robust error handling for all SuperClaude hook operations.*
|